971 resultados para Spontaneous Combustion
Resumo:
This dissertation represents experimental and numerical investigations of combustion initiation trigged by electrical-discharge-induced plasma within lean and dilute methane air mixture. This research topic is of interest due to its potential to further promote the understanding and prediction of spark ignition quality in high efficiency gasoline engines, which operate with lean and dilute fuel-air mixture. It is specified in this dissertation that the plasma to flame transition is the key process during the spark ignition event, yet it is also the most complicated and least understood procedure. Therefore the investigation is focused on the overlapped periods when plasma and flame both exists in the system. Experimental study is divided into two parts. Experiments in Part I focuses on the flame kernel resulting from the electrical discharge. A number of external factors are found to affect the growth of the flame kernel, resulting in complex correlations between discharge and flame kernel. Heat loss from the flame kernel to code ambient is found to be a dominant factor that quenches the flame kernel. Another experimental focus is on the plasma channel. Electrical discharges into gases induce intense and highly transient plasma. Detailed observation of the size and contents of the discharge-induced plasma channel is performed. Given the complex correlation and the multi-discipline physical/chemical processes involved in the plasma-flame transition, the modeling principle is taken to reproduce detailed transitions numerically with minimum analytical assumptions. Detailed measurement obtained from experimental work facilitates the more accurate description of initial reaction conditions. The novel and unique spark source considering both energy and species deposition is defined in a justified manner, which is the key feature of this Ignition by Plasma (IBP) model. The results of numerical simulation are intuitive and the potential of numerical simulation to better resolve the complex spark ignition mechanism is presented. Meanwhile, imperfections of the IBP model and numerical simulation have been specified and will address future attentions.
Resumo:
We report a case of progressive, multifocal melorheostosis in a 28-year-old woman, with involvement of the left arm, chest, spine, and impressive soft tissue involvement. In the past, she had undergone multiple vascular interventions. She presented with spontaneous massive bilateral chylothorax. After conservative treatment without success, we conducted bilateral pleurodesis. This resulted in a clear reduction of pleural effusions, but her medical condition subsequently worsened due to progressive parenchymatous infiltrates, and increased interlobal pleural effusions. She ultimately died of global respiratory insufficiency. In patients with melorheostosis, involvement of the soft tissue can result in distinctive morbidity, and whenever possible, treatment should be conservative.
Resumo:
A fundamental combustion model for spark-ignition engine is studied in this report. The model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and in-cylinder pressure) under various engine operation conditions. The combustion model includes a turbulent propagation and eddy burning processes based on literature [1]. The turbulence propagation and eddy burning processes are simulated by zero-dimensional method and the flame is assumed as sphere. To predict pressure, temperature and other in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of this model match well with the engine test data under various engine speeds, loads, spark ignition timings and air fuel mass ratios. The developed model is used to study cyclic variation and combustion stability at lean (or diluted) combustion conditions. Several variation sources are introduced into the combustion model to simulate engine performance observed in experimental data. The relations between combustion stability and the introduced variation amount are analyzed at various lean combustion levels.
Resumo:
BACKGROUND AND PURPOSE: We set out to investigate the predictors and time course for recanalization of spontaneous dissection of the cervical internal carotid artery (SICAD). METHODS: We prospectively included 249 consecutive patients (mean age, 45+/-11 years) with 268 SICAD. Ultrasound examinations were performed at presentation, during the first month, and then at 3, 6, and 12 months, and clinical follow-ups after 3, 6, and 12 months. RESULTS: Of 268 SICADs, 20 (7.5%) presented with
Resumo:
BACKGROUND: Spontaneous cervicocephalic artery dissection (sCAD) of more than two cervical arteries is rare. PATIENTS AND METHODS: Vascular and potential sCAD risk factors, triggering events, clinical and neuroimaging findings, and outcome of patients with multiple sCAD were studied. Patients were drawn from prospective hospital-based sCAD registries. RESULTS: Of 740 consecutive patients with sCAD, 11 (1.5%) had three, and one had four (0.1%) sCAD. Eight of these 12 patients were women. One patient had additional dissections of the celiac trunk and hepatic artery. Vascular risk factors included hypertension (n = 1), hypercholesterolaemia (n = 6), current smoking (n = 5) and migraine (n = 6). No patient had a family history of sCAD, fibromuscular dysplasia (FMD) or connective tissue disease. SCAD was preceded by a minor trauma in five and infection in four patients. Clinical manifestations included ischaemic stroke (n = 8), transient ischaemic attack (n = 3), headache (n = 9), neck pain (n = 4), Horner syndrome (n = 5), pulsatile tinnitus (n = 2) and dysgeusia (n = 1). Brain MRI revealed ischaemic infarcts that affected one vessel territory in seven and two territories in two patients. The 3-month outcome was favourable (modified Rankin scale score 0-1) in 10 patients (83%). No new recurrent stroke or sCAD occurred during a mean follow-up of 50 (SD 29) months. CONCLUSION: Multiple sCAD occurred preferentially in women and caused clinical symptoms and signs mainly in one vascular territory. In none of the patients was FMD or any other underlying arteriopathy apparent. The majority of multiple sCAD was preceded by a minor trauma or infection. Clinical outcome was favourable in most patients, and long-term prognosis benign. The data suggest that transient vasculopathy may be a major mechanism for multiple sCAD.
Resumo:
Spontaneous metastases in small cell lung cancer (SCLC) occur regularly in patients but seldom if any in conventional xenograft mouse models. To overcome this problem, SCLC cells were grafted subcutaneously onto pore forming protein and recombination activating gene 2 double knock out (pfp/rag2) mice and in severe combined immunodeficient (scid) mice. Primary tumours grew well in both mouse strains, while metastases occurred frequently in the pfp/rag2 mice and infrequently in scid mice. Hence NK cells, which are inactive in pfp/rag2 mice, play an important role in SCLC metastasis formation in xenograft models. This observation is in agreement with clinical studies, where a high NK cell number in the blood is correlated with a better prognosis of the patient.
Resumo:
In contrast-enhanced (CE) MR myelography, hyperintense signal outside the intrathecal space in T1-weighted sequences with spectral presaturation inversion recovery (SPIR) is usually considered to be due to CSF leakage. We retrospectively investigated a hyperintense signal at the apex of the lung appearing in this sequence in patients with SIH (n = 5), CSF rhinorrhoea (n = 2), lumbar spine surgery (n = 1) and in control subjects (n = 6). Intrathecal application of contrast agent was performed in all patients before MR examination, but not in the control group. The reproducible signal increase was investigated with other fat suppression techniques and MR spectroscopy. All patients and controls showed strongly hyperintense signal at the apex of the lungs imitating CSF leakage into paraspinal tissue. This signal increase was identified as an artefact, caused by spectroscopically proven shift and broadening of water and lipid resonances (1-2 ppm) in this anatomical region. Only patients with SIH showed additional focal enhancement along the spinal nerve roots and/or in the spinal epidural space. In conclusion CE MR myelography with spectral selective fat suppression shows a reproducible cervicothoracic artefact, imitating CSF leakage. Selective water excitation technique as well as periradicular and epidural contrast collections may be helpful to discriminate between real pathological findings and artefacts.
Resumo:
Acute infection with the hepatitis C virus (HCV) induces a wide range of innate and adaptive immune responses. A total of 20-50% of acutely HCV-infected individuals permanently control the virus, referred to as 'spontaneous hepatitis C clearance', while the infection progresses to chronic hepatitis C in the majority of cases. Numerous studies have examined host genetic determinants of hepatitis C infection outcome and revealed the influence of genetic polymorphisms of human leukocyte antigens, killer immunoglobulin-like receptors, chemokines, interleukins and interferon-stimulated genes on spontaneous hepatitis C clearance. However, most genetic associations were not confirmed in independent cohorts, revealed opposing results in diverse populations or were limited by varying definitions of hepatitis C outcomes or small sample size. Coordinated efforts are needed in the search for key genetic determinants of spontaneous hepatitis C clearance that include well-conducted candidate genetic and genome-wide association studies, direct sequencing and follow-up functional studies.