942 resultados para Species distribution modelling
Resumo:
From September 2008 to March 2010, 397 ticks (315 larvae, 33 nymphs, 23 females, and 26 males) were collected from captive and free-living wildlife species in northeastern Brazil. Six tick species were identified, including Amblyomma auricularium (Conil) on Tamandua tetradactyla (L.),Amblyomma dubitalum Neumann on Hydrochaeris hydrochaeris (L.), Nectomys rattus (Pelzen) and T. tetradactyla, Amblyomma parvim A ragao on T. tatradactyla, Amblyomma rotundatum Koch on Boa constrictor L., Chelonoidis carbonaria (Spix), Kinosternon scorpioides (L.) and Rhinella jimi (Stevaux), Amblyomma cerium Koch on Bradypus variegatus Schinz, and Rhipicephalus sanguineus (Latreille) on Lycalopex vetulus (Lund). Nectomys rattus and T. tetradactyla are new hosts for A. dubitatum This study extends the known distribution of A. dubitatum in South America and provides evidence that its geographical range has been underestimated because of the lack of research. Four (A. dubitatum, A. parvum, A. rotundatum, and R. sanguineus) of six tick species identified in this study have previously been found on humans in South America, some of them being potentially involved in the transmission of pathogens of zoonotic concern.
Resumo:
We surveyed the larval habitats of member,, of the Anopheles punctulatus group of mosquitoes on Niolam (Lihir) Island. Papua New Guinea. Identification of this group was undertaken by polymerase chain reaction-restriction fragment length polymorphism analysis of the amplified internal transcribed spacer unit 2 of rDNA. because morphologic separation of member species is unreliable. The most widespread malaria vector species and their most common larval habitats identified to aid source-reduction programs for malaria control. The most ubiquitous species was An. punctulatus, followed by An. farauti no. 2. then An. farauti s.s. Anopheles punctulatus has increased relative to An.farauti s.l. since the start of development projects on Lihir Island. The most common larval habitats were shallow temporary pools with clay substrate and with plants or floatage. These habitats. mostly encountered alongside poorly drained roads, may be increased by development projects.
Resumo:
A combination of modelling and analysis techniques was used to design a six component force balance. The balance was designed specifically for the measurement of impulsive aerodynamic forces and moments characteristic of hypervelocity shock tunnel testing using the stress wave force measurement technique. Aerodynamic modelling was used to estimate the magnitude and distribution of forces and finite element modelling to determine the mechanical response of proposed balance designs. Simulation of balance performance was based on aerodynamic loads and mechanical responses using convolution techniques. Deconvolution was then used to assess balance performance and to guide further design modifications leading to the final balance design. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Background, aim: The present study describes (i) the natural distribution of the three putative periodontopathogens Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans in an Australian population and (ii) the relationship between these organisms, pocket depths and supragingival plaque scores. Methods: Subgingival plaque was collected from the shallowest and deepest probing site in each sextant of the dentition. In total, 6030 subgingival plaque samples were collected from 504 subjects. An ELISA utilising pathogen-specific monoclonal antibodies was used to quantitate bacterial numbers. Results:: A. actinomycetemcomitans was the most frequently detected organism (22.8% of subjects) followed by P. gingivalis and P. intermedia (14.7% and 9.5% of subjects respectively). The majority of infected subjects (83%) were colonised by a single species of organism. A. actinomyceteincomitans presence was overrepresented in the youngest age group but under-represented in the older age groups. Conversely, P. gingivalis and P. intermedia presence was under-represented in the youngest age group but over-represented in the older age groups. Differing trends in the distribution of these bacteria were observed between subjects depending upon the site of the infection or whether a single or mixed infection was present; however, these differences did not reach significance. Bacterial presence was strongly associated with pocket depth for both A. actinomyceteincomitans and P. gingivalis. For A. actinomycetemcomitans, the odds of a site containing this bacterium decrease with deeper pockets. In contrast, for P. gingivalis the odds of a site being positive are almost six times greater for pockets >3 ram than for pockets less than or equal to3 nun. These odds increase further to 15.3 for pockets deeper than 5 mm. The odds of a site being P. intermedia positive were marginally greater (1.16) for pockets deeper than 3 mm. Conclusions: This cross-sectional study in a volunteer Australian population, demonstrated recognised periodontal pathogens occur as part of the flora of the subgingival plaque. Prospective longitudinal studies are needed to examine the positive relationship between pocket depth and pathogen presence with periodontal disease initiation and/or progression.
Resumo:
Understanding the pattern in which adult drosophilids of different species are distributed across and within different vegetation types is necessary for accurate interpretation of their local ecology and diversity. Such studies have been conducted mainly in temperate regions, and there is no basis for extrapolating their conclusions to tropical areas. This study describes the vertical distribution (0-20 m) of drosophilids attracted to banana baits in five different vegetation types in subtropical eastern Australia including open woodland, and rain-forest types. The distribution of most of the 15 common species could be characterized three-dimensionally by vegetation type and height above forest floor. Only one species, Scaptodrosophila lativittata, was common in all vegetation types and it was a canopy species in rain forests and a ground-level species in open woodland. Vertical distribution of some species clearly matched that of their larval hosts, but it did not in others. For example, the fungivore Leucophenga scutellata was mostly trapped well above the forest floor, yet it breeds at ground level, suggesting behavioural mode can influence vertical distributions. We conclude that the vertical dimension, although still poorly understood in relation to drosophilid habitats, needs to be taken into account when conducting and interpreting studies aimed at understanding drosophilid populations and communities in the subtropics.
Resumo:
Altricial nestlings solicit food by begging and engaging in scramble competition. Solicitation displays can thus signal both hunger and competitive ability. I examined nestling solicitation and parental responses in crimson rosellas (Platycercus elegans), a species in which parents engage in complex patterns of food allocation and appear to control the distribution of food. By manipulating the hunger of individual chicks and entire broods, I assessed how chick behaviours and parental food allocation varied with hatching rank, level of hunger, and intensity of nestling competition. Last-hatched chicks begged more than first-hatched chicks irrespective of individual hunger levels. The two parents combined fed individually hungry chicks more, but mothers and fathers varied in their responses to begging chicks: fathers fed last-hatched chicks in proportion to their begging intensity, whereas mothers fed chicks equally. Since fathers generally allocate more food to first-hatched chicks, fathers appear to use begging rates to adjust food allocation to non-preferred chicks within the brood. When I manipulated brood hunger levels, begging rates increased for first- and last-hatched chicks suggesting that chick begging rates are sensitive to the level of competition. This study shows that begging by rosella chicks does not correlate with hunger in a straightforward way and that the primary patterns of food allocation by parents art: not influenced by chick begging. Thus the benefits of increased begging may be limited for nestlings in this species.
Resumo:
In the past century, the debate over whether or not density-dependent factors regulate populations has generally focused on changes in mean population density, ignoring the spatial variance around the mean as unimportant noise. In an attempt to provide a different framework for understanding population dynamics based on individual fitness, this paper discusses the crucial role of spatial variability itself on the stability of insect populations. The advantages of this method are the following: (1) it is founded on evolutionary principles rather than post hoc assumptions; (2) it erects hypotheses that can be tested; and (3) it links disparate ecological schools, including spatial dynamics, behavioral ecology, preference-performance, and plant apparency into an overall framework. At the core of this framework, habitat complexity governs insect spatial variance. which in turn determines population stability. First, the minimum risk distribution (MRD) is defined as the spatial distribution of individuals that results in the minimum number of premature deaths in a population given the distribution of mortality risk in the habitat (and, therefore, leading to maximized population growth). The greater the divergence of actual spatial patterns of individuals from the MRD, the greater the reduction of population growth and size from high, unstable levels. Then, based on extensive data from 29 populations of the processionary caterpillar, Ochrogaster lunifer, four steps are used to test the effect of habitat interference on population growth rates. (1) The costs (increasing the risk of scramble competition) and benefits (decreasing the risk of inverse density-dependent predation) of egg and larval aggregation are quantified. (2) These costs and benefits, along with the distribution of resources, are used to construct the MRD for each habitat. (3) The MRD is used as a benchmark against which the actual spatial pattern of individuals is compared. The degree of divergence of the actual spatial pattern from the MRD is quantified for each of the 29 habitats. (4) Finally, indices of habitat complexity are used to provide highly accurate predictions of spatial divergence from the MRD, showing that habitat interference reduces population growth rates from high, unstable levels. The reason for the divergence appears to be that high levels of background vegetation (vegetation other than host plants) interfere with female host-searching behavior. This leads to a spatial distribution of egg batches with high mortality risk, and therefore lower population growth. Knowledge of the MRD in other species should be a highly effective means of predicting trends in population dynamics. Species with high divergence between their actual spatial distribution and their MRD may display relatively stable dynamics at low population levels. In contrast, species with low divergence should experience high levels of intragenerational population growth leading to frequent habitat-wide outbreaks and unstable dynamics in the long term. Six hypotheses, erected under the framework of spatial interference, are discussed, and future tests are suggested.
Resumo:
The green macroalgal species Caulerpa taxifolia is indigenous to tropical/subtropical Australia, ranging as far south as 28degrees and 29degrees 15' S on the Australian mainland east and west coasts, respectively. The origin of disjunct populations of the species, discovered in 2000 on the Australian mainland east coast at localities to 35degrees S remains unknown, variously attributed to introduced exotic strains or range extensions from other eastern Australian populations. Some naturally occurring Australian populations of C. taxifolia are similar to Mediterranean C. taxifolia. In Australia, large broad forms of the species, which have been known in the region since 1860, grow luxuriantly in sheltered seagrass meadows, with some of these populations tolerating minimum surface seawater temperatures in winter of 12.5 to 14.5degreesC. Accordingly, the contention that the Mediterranean has been invaded by a genetically-modified, large, cold-adapted strain of C. taxifolia may be incorrect. It is crucial that genetic markers (DNA fingerprinting, microsatellites) sensitive at the population level are used to accurately determine the genetic relatedness of C. taxifolia populations.
Resumo:
Supply and demand largely determine the price of goods on human markets. It has been proposed that in animals, similar forces influence the payoff distribution between trading partners in Sexual selection, intraspecific cooperation and interspecific mutualism. Here we present the first experimental evidence supporting biological market theory in it study on cleaner fish, Labroides dimidiatus. Cleaners interact with two classes of clients: choosy client species with access to several cleaners usually do not queue for service and do not return if ignored, while resident client species with access to only one cleaning station do queue or return. We used plexiglas plates with equal amounts of food to stimulate these behaviours of the two client classes. Cleaners soon inspected 'choosy' plates before 'resident' plates. This supports previous field observations that suggest that client species with access to several cleaners exert choice to receive better(immediate) service.
Resumo:
Avicennia marina is an important mangrove species with a wide geographical and climatic distribution which suggests that large amounts of genetic diversity are available for conservation and breeding programs. In this study we compare the informativeness of AFLPs and SSRs for assessing genetic diversity within and among individuals, populations and subspecies of A. marina in Australia. Our comparison utilized three SSR loci and three AFLP primer sets that were known to be polymorphic, and could be run in a single analysis on a capillary electrophoresis system, using different-colored fluorescent dyes. A total of 120 individuals representing six populations and three subspecies were samplcd. At the locus level, SSRs were considerably more variable than AFLPs, with a total of 52 alleles and an average heterozygosity of 0.78. Average heterozygosity for AFLPs was 0.193, but all of the 918 bands scored were polymorphic. Thus, AFLPs were considerably more efficient at revealing polymorphic loci than SSRs despite lower average heterozygosities. SSRs detected more genetic differentiation between populations (19 vs 9%) and subspecies (35 vs 11%) than AFLPs. Principal co-ordinate analysis revealed congruent patterns of genetic relationships at the individual, population and subspecific levels for both data sets. Mantel testing confirmed congruence between AFLP and SSR genetic distances among, but not within, population comparisons, indicating that the markers were segregating inde- pendently but that evolutionary groups (populations and subspecies) were similar. Three genetic criteria of importance for defining priorities for ex situ collections or in situ conservation programs (number of alleles, number of locally common alleles and number of private alleles) were correlated between the AFLP and SSR data sets. The congruence between AFLP and SSR data sets suggest that either method, or a combination, is applicable to expanded genetic studies of mangroves. The codominant nature of SSRs makes them ideal for further population-based investigations, such as mating-system analyses, for which the dominant AFLP markers are less well suited. AFLPs may be particularly useful for monitoring propagation programs and identifying duplicates within collections, since a single PCR assay can reveal many loci at once.
Resumo:
Mangroves are often described as a group of plants with common features and common origins based mostly on their broad distributional patterns, together with an erroneous view of comparable abilities in long-distance dispersal. However, whilst mangroves have common needs to adapt to rigorous environmental constraints associated with regular seawater inundation, individual taxa have developed different strategies and characteristics. Since mangroves are a genetically diverse group of mostly flowering plants, they may also have evolved at quite different geological periods, dispersed at different rates from different locations and developed different adaptive strategies. Current distributions of individual taxa show numerous instances of unusual extant distribution which demonstrate finite dispersal limitations, especially across open water. Our preliminary assessment of broad distribution and discontinuities reveals important patterns. Discontinuities, in the absence of current dispersal barriers, may be explained by persistent past barriers. As we learn more about discontinuities, we are beginning to appreciate their immense implications and what they might tell us about past geological conditions and how these might have influenced the distribution and evolution of mangroves. In this article, we describe emerging patterns in genetic relationships and distributions based on both current knowledge and preliminary results of our studies of molecular and morphometric characteristics of Rhizophora species in the Indo West Pacific region.
Resumo:
It was previously published by the authors that granules can either coalesce through Type I (when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch) or Type II (when granules are slowed to a halt during rebound, after their surfaces have made contact) (AIChE J. 46 (3) (2000) 529). Based on this coalescence mechanism, a new coalescence kernel for population balance modelling of granule growth is presented. The kernel is constant such that only collisions satisfying the conditions for one of the two coalescence types are successful. One constant rate is assigned to each type of coalescence and zero is for the case of rebound. As the conditions for Types I and II coalescence are dependent on granule and binder properties, the coalescence kernel is thus physically based. Simulation results of a variety of binder and granule materials show good agreement with experimental data. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Members of the Culex sitiens subgroup are important vectors of arboviruses, including Japanese encephalitis virus, Murray Valley encephalitis virus and Ross River virus. Of the eight described species, Cx. annulirostris Skuse, Cx. sitiens Wiedemann, and Cx. palpalis Taylor appear to be the most abundant and widespread throughout northern Australia and Papua New Guinea (PNG). Recent investigations using allozymes have shown this subgroup to contain cryptic species that possess overlapping adult morphology. We report the development of a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) procedure that reliably separates these three species. This procedure utilizes the sequence variation in the ribosomal DNA ITS1 and demonstrates species-specific PCR-RFLP profiles from both colony and field collected material. Assessment of the consistency of this procedure was undertaken on mosquitoes sampled from a wide geographic area including Australia, PNG, and the Solomon Islands. Overlapping adult morphology was observed for Cx. annulirostris and Cx. palpalis in both northern Queensland and PNG and for all three species at one site in northwest Queensland.
Resumo:
We present the first mathematical model on the transmission dynamics of Schistosoma japonicum. The work extends Barbour's classic model of schistosome transmission. It allows for the mammalian host heterogeneity characteristic of the S. japonicum life cycle, and solves the problem of under-specification of Barbour's model by the use of Chinese data we are collecting on human-bovine transmission in the Poyang Lake area of Jiangxi Province in China. The model predicts that in the lake/marshland areas of the Yangtze River basin: (1) once-early mass chemotherapy of humans is little better than twice-yearly mass chemotherapy in reducing human prevalence. Depending on the heterogeneity of prevalence within the population, targeted treatment of high prevalence groups, with lower overall coverage, can be more effective than mass treatment with higher overall coverage. Treatment confers a short term benefit only, with prevalence rising to endemic levels once chemotherapy programs are stopped (2) depending on the relative contributions of bovines and humans, bovine treatment can benefit humans almost as much as human treatment. Like human treatment, bovine treatment confers a short-term benefit. A combination of human and bovine treatment will dramatically reduce human prevalence and maintains the reduction for a longer period of time than treatment of a single host, although human prevalence rises once treatment ceases; (3) assuming 75% coverage of bovines, a bovine vaccine which acts on worm fecundity must have about 75% efficacy to reduce the reproduction rate below one and ensure mid-term reduction and long-term elimination of the parasite. Such a vaccination program should be accompanied by an initial period of human treatment to instigate a short-term reduction in prevalence, following which the reduction is enhanced by vaccine effects; (4) if the bovine vaccine is only 45% efficacious (the level of current prototype vaccines) it will lower the endemic prevalence, but will not result in elimination. If it is accompanied by an initial period of human treatment and by a 45% improvement in human sanitation or a 30% reduction in contaminated water contact by humans, elimination is then possible. (C) 2002 Elsevier Science B.V. All rights reserved.