993 resultados para Space biology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish samples were collected using seine and trawl nets in Nyanza Gulf, Lake Victoria (Kenya) in order to study the reproductive and gonadal patterns of Oreochromis niloticus; samples were collected from June 1998 to February 1999. The variation in relative condition factor and monthly variation in gonad weight showed spawning took place between June and July. Most ripe fish were recovered between November and February, while a slight drop in GSI for males was noted between November and January. External factors triggering reproductive strategy are now being addressed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.

To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.

In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the gamma-gamma probability distribution is used to model turbulent channels. The bit error rate (BER) performance of free space optical (FSO) communication systems employing on-off keying (OOK) or subcarrier binary phase-shift keying (BPSK) modulation format is derived. A tip-tilt adaptive optics system is also incorporated with a FSO system using the above modulation formats. The tip-tilt compensation can alleviate effects of atmospheric turbulence and thereby improve the BER performance. The improvement is different for different turbulence strengths and modulation formats. In addition, the BER performance of communication systems employing subcarrier BPSK modulation is much better than that of compatible systems employing OOK modulation with or without tip-tilt compensation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-resolved spectra of line-shaped laser-produced magnesium plasmas in the normal direction of the target have been obtained using a pinhole crystal spectrograph. These spectra are treated by a spectrum analyzing code for obtaining the true spectra and fine structures of overlapped lines. The spatial distributions of electron temperature and density along the normal direction of the target surface have been obtained with different spectral diagnostic techniques. Especially, the electron density plateaus beyond the critical surface in line-shaped magnesium plasmas have been obtained with a fitting technique applied to the Stark-broadened Ly-alpha wings of hydrogenic ions. The difference of plasma parameters between those obtained by different diagnostic techniques is discussed. Other phenomena, such as plasma satellites, population inversion, etc., which are observed in magnesium plasmas, are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological advances in the marine renewable energy industry and increased clarity about the leasing and licensing process are fostering development proposals in both state and federal waters. The ocean is becoming more industrialized and competition among all marine space users is developing (Buck et al. 2004). More spatial competition can lead to conflict between ocean users themselves, and to tensions that spill over to include other stakeholders and the general public (McGrath 2004). Such conflict can wind up in litigation, which is costly and takes agency time and financial resources away from other priorities. As proposals for marine renewable energy developments are evaluated, too often decision-makers lack the tools and information to properly account for the cumulative effects and the tradeoffs associated with alternative human uses of the ocean. This paper highlights the nature of marine space conflicts associated with marine renewable energy literature highlights key issues for the growth of the marine renewable energy sector in the United States. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic interaction processes between a nano-second laser pulse and a gas-puff target, such as those of plasma formation, laser heating, and x-ray emission, have been investigated quantitatively. Time and space-resolved x-ray and optical measurement techniques were used in order to investigate time-resolved laser absorption and subsequent x-ray generation. Efficient absorption of the incident laser energy into the gas-puff target of 17%, 12%, 38%, and 91% for neon, argon, krypton, and xenon, respectively, was shown experimentally. It was found that the laser absorption starts and, simultaneously, soft x-ray emission occurs. The soft x-ray lasts much longer than the laser pulse due to the recombination. Temporal evolution of the soft x-ray emission region was analyzed by comparing the experimental results to the results of the model calculation, in which the laser light propagation through a gas-puff plasma was taken into account. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations of fs laser propagation in water have been made to explain the small-scale filaments in water we have observed by a nonlinear fluorescence technique. Some analytical descriptions combined with numerical simulations show that a space-frequency coupling mainly from the interplay among self-phase modulation, dispersion and phase mismatching will reshape the laser beam into a conical wave which plays a major role of energy redistribution and can prevent laser beam from self-guiding over a long distance. An effective group velocity dispersion is introduced to explain the pulse broadening and compression in the filamentation. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of seismogenic asperities and aseismic barriers has become a useful paradigm within which to understand the seismogenic behavior of major faults. Since asperities and barriers can be thought of as defining the potential rupture area of large megathrust earthquakes, it is thus important to identify their respective spatial extents, constrain their temporal longevity, and to develop a physical understanding for their behavior. Space geodesy is making critical contributions to the identification of slip asperities and barriers but progress in many geographical regions depends on improving the accuracy and precision of the basic measurements. This thesis begins with technical developments aimed at improving satellite radar interferometric measurements of ground deformation whereby we introduce an empirical correction algorithm for unwanted effects due to interferometric path delays that are due to spatially and temporally variable radar wave propagation speeds in the atmosphere. In chapter 2, I combine geodetic datasets with complementary spatio-temporal resolutions to improve our understanding of the spatial distribution of crustal deformation sources and their associated temporal evolution – here we use observations from Long Valley Caldera (California) as our test bed. In the third chapter I apply the tools developed in the first two chapters to analyze postseismic deformation associated with the 2010 Mw=8.8 Maule (Chile) earthquake. The result delimits patches where afterslip occurs, explores their relationship to coseismic rupture, quantifies frictional properties associated with inferred patches of afterslip, and discusses the relationship of asperities and barriers to long-term topography. The final chapter investigates interseismic deformation of the eastern Makran subduction zone by using satellite radar interferometry only, and demonstrates that with state-of-art techniques it is possible to quantify tectonic signals with small amplitude and long wavelength. Portions of the eastern Makran for which we estimate low fault coupling correspond to areas where bathymetric features on the downgoing plate are presently subducting, whereas the region of the 1945 M=8.1 earthquake appears to be more highly coupled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This brief paper gives some notes on the geographical distribution and salinity tolerances of some Mugil species occurring in the Black-Johnson estuary, Sierra Leone

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m² have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications.

The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during the AAReST mission.