994 resultados para Solid Breast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a series of near-UV (∼385 nm) emitting LEDs, consisting of high efficiency InGaN/AlInGaN QWs in the active region, was investigated. Significantly reduced roll-over of efficiency at high current density was found compared to InGaN/GaN LEDs emitting at a similar wavelength. The importance of optical cavity effects in flip-chip geometry devices has also been investigated. The light output was enhanced by more than a factor of 2 when the lightemitting region was located at an anti-node position with respect to a high reflectivity current injection mirror. A power of 0.49 mW into a numerical aperture of 0.5 was obtained for a junction area of 50μm in diameter and a current of 30 mA, corresponding to a radiance of 30 W/cm2/str.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the mode I stress intensity factors for functionally graded solid cylinders with an embedded penny-shaped crack or an external circumferential crack. The solid cylinders are assumed under remote uniform tension. The multiple isoparametric finite element method is used. Various types of functionally graded materials and different gradient compositions for each type are investigated. The results show that the material property distribution has a quite considerable in influence on the stress intensity factors. The influence for embedded cracks is quite different from that for external cracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a shock wave interacts with a group of solid spheres, non-linear aerodynamic behaviors come into effect. The complicated wave reflections such as the Mach reflection occur in. the wave propagation process. The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves. This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres. A schlieren photography was applied to visualize the various shock waves passing through solid spheres. Pressure measurements were performed along different downstream positions. The experiments were conducted in both rectangular and circular shock tubes. The data with respect to the effect of the sphere array, size, interval distance, incident Mach number, etc., on the shock wave attenuation were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson-Zaki exponent n show, under certain conditions during bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration discontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and upward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace have been validated experimentally. (c) 2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimization of off-null ellipsometry is described with emphasis on the improvement of sample thickness sensitivity. Optimal conditions are dependent on azimuth angle settings of the polarizer, compensator, and analyzer in a polarizer-compensator-sample-analyzer ellipsometer arrangement. Numerical simulation utilized offers an approach to present the dependence of the sensitivity on the azimuth angle settings, from which optimal settings corresponding to the best sensitivity are derived. For a series of samples of SiO2 layer (thickness in the range of 1.8-6.5 nm) on silicon substrate, the theory analysis proves that sensitivity at the optimal settings is increased 20 times compared to that at null settings used in most works, and the relationship between intensity and thickness is simplified as a linear type instead of the original nonlinear type, with the relative error reduced to similar to 1/100 at the optimal settings. Furthermore the discussion has been extended toward other factors affecting the sensitivity of the practical system, such as the linear dynamic range of the detector, the signal-to-noise ratio and the intensity from the light source, etc. Experimental results from the investigation Of SiO2 layer on silicon substrate are chosen to verify the optimization. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the statistical thermodynamics theory, a theoretical model of adsorbate induced surface stress of adatoms adsorption on solid surface is presented. For the low coverage, the interaction between the adsorbed molecules is entirely negligible and the adsorption induced surface stress is found to be the function of the coverage and the adsorption energy change with strain. For the high coverage, the adsorbate-adsorbate interaction contributes to the adsorption-induced surface stress effectively. In the case of carbon adsorption on the Ni(100) surface, the value of 0.5 is obtained as a characteristic coverage to decide whether to take the interaction between the adsorabtes into consideration and the results also show that the adsorption induces a compressive surface stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When materials processing is conducted in air surroundings by use of an impinging plasma jet, the ambient air will be entrained into the materials processing region, resulting in unfavorable oxidation of the feedstock metal particles injected into the plasma jet and of metallic substrate material. Using a cylindrical solid shield may avoid the air entrainment if the shield length is suitably selected and this approach has the merit that expensive vacuum chamber and its pumping system are not needed. Modeling study is thus conducted to reveal how the length of the cylindrical solid shield affects the ambient air entrainment when materials processing (spraying, remelting, hardening, etc.) is conducted by use of a turbulent or laminar argon plasma jet impinging normally upon a flat substrate in atmospheric air. It is shown that the mass flow rate of the ambient air entrained into the impinging plasma jet cannot be appreciably reduced unless the cylindrical shield is long enough. In order to completely avoid the air entrainment, the gap between the downstream-end section of the cylindrical solid shield and the substrate surface must be carefully selected, and the suitable size of the gap for the turbulent plasma jet is appreciably larger than that for the laminar one. The overheating of the solid shield or the substrate could become a problem for the turbulent case, and thus additional cooling measure may be needed when the entrainment of ambient air into the turbulent impinging plasma jet is to be completely avoided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die swell is an important, phenomenon. in polymer processing, and is explained usually by rheological properties of the fluid. Because of the nonuniform of temperature distribution on the free surface of the liquid jet, the thermo capillary convection driven by surface tension gradient exists. The rheological fluid flowing out of a die and painting on a moving solid wall is studied by the numerical finite element method of a two-dimensional and unsteady model in the present paper, and both the rheological effect of a non-Newtonian fluid and the thermocapillary effect are considered. The results show that both,effects; will enlarge the cross-section of the fluid jet, and the rheological effect of non-Newtonian fluid dominates the process in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the process of lysozyme protein crystallization with batch method, the macroscopic flow field of solid/liquid system was observed by particle image velocimetry (PIV). Furthermore, a normal growth rate of (110) face and local flow field around a single protein crystal were obtained by a long work distance microscope. The experimental results showed that the average velocity, the maximal velocity of macroscopic solid/liquid system and the velocity of local flow field around single protein crystal were fluctuant. The effective boundary layer thickness delta(eff), the concentration at the interface Q and the characteristic velocity V were calculated using a convection-diffusion model. The results showed that the growth of lysozyme crystal in this experiment was dominated by interfacial kinetics rather than bulk transport, and the function of buoyancy-driven flow in bulk transport was small, however, the effect of bulk transport in crystal growth had a tendency to increase with the increase of lysozyme concentration. The calculated results, also showed that the order of magnitude of shear force was about 10(-21) N, which was much less than the bond force between the lysozyme molecules. Therefore the shear force induced by buoyancy-driven flows cannot remove the protein molecules from the interface of crystal.