922 resultados para Solar water heaters
Resumo:
The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.
Resumo:
Portable water-filled barriers (PWFB) are roadside structures used to enhance safety at roadside work-zones. Ideally, a PWFB system is expected to protect persons and objects behind it and redirect the errant vehicle. The performance criteria of a road safety barrier system are (i) redirection of the vehicle after impact and (ii) lateral deflection within allowable limits. Since its inception, the PWFB has received criticism due to its underperformance compared to the heavier portable concrete barrier. A new generation composite high energy absorbing road safety barrier was recently developed by the authors.
Resumo:
The aluminum (Al) doped polycrystalline p-type β-phase iron disilicide (p-β-FeSi2) is grown by thermal diffusion of Al from Al-passivated n-type Si(100) surface into FeSi2 during crystallization of amorphous FeSi2 to form a p-type β-FeSi 2/n-Si(100) heterostructure solar cell. The structural and photovoltaic properties of p-type β-FeSi2/n-type c-Si structures is then investigated in detail by using X-ray diffraction, Raman spectroscopy, transmission electron microscopy analysis, and electrical characterization. The results are compared with Al-doped p-β-FeSi2 prepared by using cosputtering of Al and FeSi2 layers on Al-passivated n-Si(100) substrates. A significant improvement in the maximum open-circuit voltage (Voc) from 120 to 320 mV is achieved upon the introduction of Al doping through cosputtering of Al and amorphous FeSi2 layer. The improvement in Voc is attributed to better structural quality of Al-doped FeSi2 film through Al doping and to the formation of high quality crystalline interface between Al-doped β-FeSi2 and n-type c-Si. The effects of Al-out diffusion on the performance of heterostructure solar cells have been investigated and discussed in detail.
Resumo:
Schottky barrier solar cells based on graphene/n-silicon heterojunction have been fabricated and characterized and the effect of graphene molecular doping by HNO3 on the solar cells performances have been analyzed. Different doping conditions and thermal annealing processes have been tested to asses and optimize the stability of the devices. The PCE of the cells increases after the treatment by HNO3 and reaches 5% in devices treated at 200 °C immediately before the exposition to the oxidant. Up to now our devices retain about 80% of efficiency over a period of two weeks, which represents a good stability result for similar devices.
Resumo:
Although science is generally assumed to be well integrated into rational decision-making models, it can be used to destabilise consultative processes, particularly when emotions are involved. Water policies are often seen as debates over technical and engineering issues, but can be highly controversial. Recycled water proposals, in particular, can create highly emotive conflicts. Through a case study regarding the rejection of recycled water proposals in the south-east Queensland, Australia, we explore the influence of science and emotions in contemporary water planning. We highlight the dangers inherent in promoting technical water planning issues at the expense of appropriate consideration of citizen concerns. Combining the science–policy interface and stakeholder engagement literatures, we advocate for collaborative decision-making processes that accommodate emotions and value judgements. A more collaborative stakeholder engagement model, founded on the principles of co-learning, has the potential to broaden the decision-making base and to promote better and more inclusive decision-making.
Resumo:
This research project provides a scientifically robust approach for assessing the resilience of water supply systems, which are critical infrastructure, to impacts of climate change and population growth. An approach for the identification of trigger points that allows timely and appropriate management actions to be taken to avoid catastrophic system failure is an important outcome of this project. In the current absence of a formal method to evaluate the resilience of a water supply system, the approach developed in this study was based on the characterisation of resilience of a water supply system to a range of surrogate measures. Accordingly, a set of indicators are proposed to evaluate system behaviour and logistic regression analysis was used to assess system behaviour under predicted rainfall, storage and demand conditions.
Resumo:
This report describes results and conclusions from the monitoring component of the Douglas Shire Council (DSC) water quality project. The components of this project that this report addresses are: • Site selection and installation of in-stream and off-paddock automatic water quality monitoring equipment in the Douglas Shire. • Design of appropriate sampling strategies for automatic stations. • Estimation of loads of suspended sediment, total nitrogen and total phosphorus in rivers and also estimation of the changes in nutrient loads from sugar cane under different fertilizer application rates. • Development of a community-based water quality sampling program to complement the automatic sampling efforts. • Design of an optimised, long-term water quality monitoring strategy.
Resumo:
This report presents the final deliverable from the project titled Conceptual and statistical framework for a water quality component of an integrated report card’ funded by the Marine and Tropical Sciences Research Facility (MTSRF; Project 3.7.7). The key management driver of this, and a number of other MTSRF projects concerned with indicator development, is the requirement for state and federal government authorities and other stakeholders to provide robust assessments of the present ‘state’ or ‘health’ of regional ecosystems in the Great Barrier Reef (GBR) catchments and adjacent marine waters. An integrated report card format, that encompasses both biophysical and socioeconomic factors, is an appropriate framework through which to deliver these assessments and meet a variety of reporting requirements. It is now well recognised that a ‘report card’ format for environmental reporting is very effective for community and stakeholder communication and engagement, and can be a key driver in galvanising community and political commitment and action. Although a report card it needs to be understandable by all levels of the community, it also needs to be underpinned by sound, quality-assured science. In this regard this project was to develop approaches to address the statistical issues that arise from amalgamation or integration of sets of discrete indicators into a final score or assessment of the state of the system. In brief, the two main issues are (1) selecting, measuring and interpreting specific indicators that vary both in space and time, and (2) integrating a range of indicators in such a way as to provide a succinct but robust overview of the state of the system. Although there is considerable research and knowledge of the use of indicators to inform the management of ecological, social and economic systems, methods on how to best to integrate multiple disparate indicators remain poorly developed. Therefore the objective of this project was to (i) focus on statistical approaches aimed at ensuring that estimates of individual indicators are as robust as possible, and (ii) present methods that can be used to report on the overall state of the system by integrating estimates of individual indicators. It was agreed at the outset, that this project was to focus on developing methods for a water quality report card. This was driven largely by the requirements of Reef Water Quality Protection Plan (RWQPP) and led to strong partner engagement with the Reef Water Quality Partnership.
Resumo:
This project has extended the knowledge in the hydrothermal synthesis of copper zinc tin sulphide (CZTS) semiconductor material which is regarded as one of the most promising light absorbing material for PV technologies. The investigation of various reaction parameters on the controlled synthesis of CZTS compound has provided important insight into the formation mechanism as well as the crystal growth behaviour of the material. CZTS nanocrystals with different crystal structure and particle size were synthesised throughout this project. The growth mechanism of CZTS crystals through a high temperature annealing treatment was also explored.
Resumo:
In this research Agency Theory and Stewardship Theory are used to analyse the relative performance of different forms of privitisation of water infrastructure and in doing so enriches understanding of previously underdeveloped aspects of both theories. The prior Agency Theory literature had established assumptions about the behaviour of principals and agents in contracts and these were found not to be correct in the context of contracts between modern government and private organisations. Agency theory was extended to include steward-like behaviour of an agent and Stewardship Theory was developed by the identification of factors within the contractual relationship which promote the sense of responsibility to the principal. The alliance, joint venture and Build Own Operate Transfer (BOOT) forms of privatisation were found to achieve stewardship of the infrastructure.
Resumo:
Two Archaean komatiitic flows, Fred’s Flow in Canada and the Murphy Well Flow in Australia, have similar thicknesses (120 and 160 m) but very different compositions and internal structures. Their contrasting differentiation profiles are keys to determine the cooling and crystallization mechanisms that operated during the eruption of Archaean ultramafic lavas. Fred’s Flow is the type example of a thick komatiitic basalt flow. It is strongly differentiated and consists of a succession of layers with contrasting textures and compositions. The layering is readily explained by the accumulation of olivine and pyroxene in a lower cumulate layer and by evolution of the liquid composition during downward growth of spinifex-textured rocks within the upper crust. The magmas that erupted to form Fred’s Flow had variable compositions, ranging from 12 to 20 wt% MgO, and phenocryst contents from 0 to 20 vol%. The flow was emplaced by two pulses. A first ~20-m-thick pulse was followed by another more voluminous but less magnesian pulse that inflated the flow to its present 120 m thickness. Following the second pulse, the flow crystallized in a closed system and differentiated into cumulates containing 30–38 wt% MgO and a residual gabbroic layer with only 6 wt% MgO. The Murphy Well Flow, in contrast, has a remarkably uniform composition throughout. It comprises a 20-m-thick upper layer of fine-grained dendritic olivine and 2–5 vol% amygdales, a 110–120 m intermediate layer of olivine porphyry and a 20–30 m basal layer of olivine orthocumulate. Throughout the flow, MgO contents vary little, from only 30 to 33 wt%, except for the slightly more magnesian basal layer (38–40 wt%). The uniform composition of the flow and dendritic olivine habits in the upper 20 m point to rapid cooling of a highly magnesian liquid with a composition like that of the bulk of the flow. Under equilibrium conditions, this liquid should have crystallized olivine with the composition Fo94.9, but the most magnesian composition measured by electron microprobe in samples from the flow is Fo92.9. To explain these features, we propose that the parental liquid contained around 32 wt% MgO and 3 wt% H2O. This liquid degassed during the eruption, creating a supercooled liquid that solidified quickly and crystallized olivine with non-equilibrium textures and compositions.