923 resultados para Solar radiation simulation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cover title.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cover title.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Literature cited": p. 95-103.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vol.7 includes selections from the annual reports of the Director, 1941-1952, and astronomical tables for 1939-1952.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and delta(18)O data for five Holocene and one modem Porites corals, each covering a growth history of 9-13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from similar to 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca-SST in the 1990s (24.8 degrees C), 10-year mean Sr/Ca-SSTs were 0.9-0.5 degrees C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by similar to 2.5 ky BP, and reached a low of 22.6 degrees C (2.2 degrees C lower) by similar to 1.5 ky BP. The summer Sr/Ca-SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1-2 degrees C higher between 6.8 and 5.0 ky BP, dropping to the present level by -2.5 ky BP, and reaching a low of 28.7 degrees C (0.7 degrees C lower) by similar to 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater delta(18)O values, reflected by offsets of mean 6 180 relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions similar to 2.5 and similar to 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 degrees C warmer than that similar to 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hermatypic-zooxanthellate corals track the diel patterns of the main environmental parameters temperature, UV and visible light - by acclimation processes that include biochemical responses. The diel course of solar radiation is followed by photosynthesis rates and thereby elicits simultaneous changes in tissue oxygen tension due to the shift in photosynthesis/respiration balance. The recurrent patterns of sunlight are reflected in fluorescence yields, photosynthetic pigment content and activity of the two protective enzymes superoxide dismutase (SOD) and catalase (CAT), enzymes that are among the universal defenses against free radical damage in living tissue. All of these were investigated in three scleractinian corals: Favia favus, Plerogyra sinuosa and Goniopora lobata. The activity of SOD and CAT in the animal host followed the course of solar radiation, increased with the rates of photosynthetic oxygen production and was correlated with a decrease in the maximum quantum yield of photochemistry in Photosystem H (PSII) (Delta F'/F-m'). SOD and CAT activity in the symbiotic algae also exhibited a light intensity correlated pattern, albeit a less pronounced one. The observed rise of the free-radical-scavenger enzymes, with a time scale of minutes to several hours, is an important protective mechanism for the existence and remarkable success of the unique cnidarian-dinoflagellate associations, in which photosynthetic oxygen production takes place within animal cells. This represents a facet of the precarious act of balancing the photosynthetic production of oxygen by the algal symbionts with their destructive action on all living cells, especially those of the animal host.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Broccoli is a vegetable crop of increasing importance in Australia, particularly in south-east Queensland and farmers need to maintain a regular supply of good quality broccoli to meet the expanding market. A predictive model of ontogeny, incorporating climatic data including frost risk, would enable farmers to predict harvest maturity date and select appropriate cultivar – sowing date combinations. To develop procedures for predicting ontogeny, yield and quality, field studies using three cultivars, ‘Fiesta’, ‘Greenbelt’ and ‘Marathon’, were sown on eight dates from 11 March to 22 May 1997, and grown under natural and extended (16 h) photoperiods at the University of Queensland, Gatton Campus. Cultivar, rather than the environment, mainly determined head quality attributes of head shape and branching angle. Yield and quality were not influenced by photoperiod. A better understanding of genotype and environmental interactions will help farmers optimise yield and quality, by matching cultivars with time of sowing. The estimated base and optimum temperature for broccoli development were 0°C and 20 °C, respectively, and were consistent across cultivars, but thermal time requirements for phenological intervals were cultivar specific. Differences in thermal time requirement from floral initiation to harvest maturity between cultivars were small and of little importance, but differences in thermal time requirement from emergence to floral initiation were large. Sensitivity to photoperiod and solar radiation was low in the three cultivars used. This research has produced models to assist broccoli farmers in crop scheduling and cultivar selection in south-east Queensland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased rates of nitrogen fertilizer application lead to increased spikelet sterility. A field experiment was conducted to investigate the effects on engorged pollen production and spikelet sterility, of nitrogen and assimilate availability during microspore development, in two rice cultivars (Doongara and Amaroo) grown under two different water depths. Despite the temperature not being low enough during microspore development to cause spikelet sterility, the number of engorged pollen grains was lower in cv. Doongara than in cv. Amaroo. Nitrogen application decreased the number of engorged pollen grains per anther through increased spikelet density. Nitrogen application increased spikelet sterility as a result of increased panicle density showing pronounced indirect effect of N on spikelet sterility. Engorged pollen number was also closely related (r = -0.636*) to the nitrogen content of the leaf blade, indicating a direct negative effect of plant N status on engorged pollen production. The results suggest that the intrinsic pollen producing ability is the key element in the difference in cold tolerance between the two cultivars, particularly under high N rates. Opening the canopy for increased solar radiation interception by the treated plants increased the level of engorged pollen, indicating the importance of immediate assimilate availability for engorged pollen production. Shading reduced crop growth rate, but did not effect engorged pollen production. There was no effect of variation in assimilates production on spikelet sterility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orbit determination from artificial satellite observations is a key process in obtaining information about the Earth and its environment. A study of the perturbations experienced by these satellites enables knowledge to be gained of the upper atmosphere, the gravity field, ocean tides, solid-Earth tides and solar radiation. The gravity field is expressed as a double infinite series of associated Legendre functions (tesseral harmonics). In contemporary global gravity field models the overall geoid is well determined. An independent check on these gravity field harmonics of a particular order may be made by analysis of satellites that pass through resonance of that order. For such satellites the perturbations of the orbital elements close to resonance are analysed to derive lumped harmonic coefficients. The orbital parameters of 1984-106A have been determined at 43 epochs, during which time the satellite was close to 14th order resonance. Analysis of the inclination and eccentricity yielded 6 lumped harmonic coefficients of order 14 whilst analysis of the mean motion yielded additional pairs of lumped harmonics of orders 14, 28 and 42, with the 14th order harmonics superseding those obtained from analysis of the inclination. This thesis concentrates in detail on the theoretical changes of a near-circular satellite orbit perturbed by the Earth's gravity field under the influence of minimal air-drag whilst in resonance with the Earth. The satellite 1984-106A experienced the interesting property of being temporarily trapped with respect to a secondary resonance parameter due to the low air-drag in 1987. This prompted the theoretical investigation of such a phenomenon. Expressions obtained for the resonance parameter led to the determination of 8 lumped harmonic coefficients, coincidental to those already obtained. All the derived lumped harmonic values arc used to test the accuracy of contemporary gravity field models and the underlying theory in this thesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the failure of PRARE the orbital accuracy of ERS-1 is typically 10-15 cm radially as compared to 3-4cm for TOPEX/Poseidon. To gain the most from these simultaneous datasets it is necessary to improve the orbital accuracy of ERS-1 so that it is commensurate with that of TOPEX/Poseidon. For the integration of these two datasets it is also necessary to determine the altimeter and sea state biases for each of the satellites. Several models for the sea state bias of ERS-1 are considered by analysis of the ERS-1 single satellite crossovers. The model adopted consists of the sea state bias as a percentage of the significant wave height, namely 5.95%. The removal of ERS-1 orbit error and recovery of an ERS-1 - TOPEX/Poseidon relative bias are both achieved by analysis of dual crossover residuals. The gravitational field based radial orbit error is modelled by a finite Fourier expansion series with the dominant frequencies determined by analysis of the JGM-2 co-variance matrix. Periodic and secular terms to model the errors due to atmospheric density, solar radiation pressure and initial state vector mis-modelling are also solved for. Validation of the dataset unification consists of comparing the mean sea surface topographies and annual variabilities derived from both the corrected and uncorrected ERS-1 orbits with those derived from TOPEX/Poseidon. The global and regional geographically fixed/variable orbit errors are also analysed pre and post correction, and a significant reduction is noted. Finally the use of dual/single satellite crossovers and repeat pass data, for the calibration of ERS-2 with respect to ERS-1 and TOPEX/Poseidon is shown by calculating the ERS-1/2 sea state and relative biases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many areas of northern India, salinity renders groundwater unsuitable for drinking and even for irrigation. Though membrane treatment can be used to remove the salt, there are some drawbacks to this approach e.g. (1) depletion of the groundwater due to over-abstraction, (2) saline contamination of surface water and soil caused by concentrate disposal and (3) high electricity usage. To address these issues, a system is proposed in which a photovoltaic-powered reverse osmosis (RO) system is used to irrigate a greenhouse (GH) in a stand-alone arrangement. The concentrate from the RO is supplied to an evaporative cooling system, thus reducing the volume of the concentrate so that finally it can be evaporated in a pond to solid for safe disposal. Based on typical meteorological data for Delhi, calculations based on mass and energy balance are presented to assess the sizing and cost of the system. It is shown that solar radiation, freshwater output and evapotranspiration demand are readily matched due to the approximately linear relation among these variables. The demand for concentrate varies independently, however, thus favouring the use of a variable recovery arrangement. Though enough water may be harvested from the GH roof to provide year-round irrigation, this would require considerable storage. Some practical options for storage tanks are discussed. An alternative use of rainwater is in misting to reduce peak temperatures in the summer. An example optimised design provides internal temperatures below 30EC (monthly average daily maxima) for 8 months of the year and costs about €36,000 for the whole system with GH floor area of 1000 m2 . Further work is needed to assess technical risks relating to scale-deposition in the membrane and evaporative pads, and to develop a business model that will allow such a project to succeed in the Indian rural context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well accepted that the climate impact of large explosive volcanic eruptions results from reduction of solar radiation following atmospheric conversion of magmatic SO emissions into HSO aerosols. Thus, understanding the fate of SO in the eruption plume is crucial for better assessing volcanic forcing of climate. Here we focus on the potential of tephra to interact with and remove SO gas from the eruptive plume. Scavenging of SO by tephra is generally assumed to be driven by in-plume, low-temperature reactions between HSO condensates and tephra particles. However, the importance of SO gas-tephra interaction above the dew point temperature of HSO (190-200°C) has never been constrained. Here we report the results of an experimental study where silicate glasses with representative volcanic compositions were exposed to SO in the temperature range 25-800°C. We show that above 600°C, the uptake of SO on glass exhibits optimal efficiency and emplaces surficial CaSO deposits. This reaction is sustained via Ca diffusion from the bulk to the surface of the glass particles. At 800°C, the diffusion coefficient for Ca in the glasses was in the range 10-10cms. We suggest that high temperature SO scavenging by glass-rich tephra proceeds by the same Ca diffusion-driven mechanism. Using a simple mathematical model, we estimated SO scavenging efficiencies at 800°C varying from