969 resultados para Solar radiation and micro pollutants
Resumo:
The aim of this study was to examine the variation in body surface temperature of grey seal (Halichoerus grypus) pups throughout lactation in response to different environmental conditions. Radiative surface temperatures (T r, °C) of pups were measured on the Isle of May (56°11′N, 02°33′W), southeast Scotland from 29 October to 25 November 2003. Records were obtained from a total of 60 pups (32 female and 28 male) from three different pupping sites during early and late lactation. Pups were sheltered from high wind speeds but air temperature, humidity and solar radiation at pupping sites were similar to general meteorological conditions. The mean T r of all pups was 15.8°C (range 7.7–29.7°C) at an average air temperature of 10.2°C (range 6.5–13.8°C). There was no difference in the mean T r of pups between early and late lactation. However, the T r varied between different regions of the body with hind flippers on average 2–6°C warmer than all other areas measured. There was no difference in mean T r of male and female pups and pup body mass did not account for the variation in T r during early or late lactation. Throughout the day there was an increase in the T r of pups and this explained 20–28% of the variation in T r depending on stage of lactation. There was no difference in the mean T r of pups between pupping sites or associated with different substrate types. Wind speed and substrate temperature had no effect on the T r of pups. However, solar radiation, air temperature and relative humidity accounted for 48% of the variation in mean T r of pups during early lactation. During late lactation air temperature and solar radiation alone accounted for 43% of the variation in T r. These results indicate that environmental conditions explain only some of the variation in T r of grey seal pups in natural conditions. Differences in T r however indicate that the cost of thermoregulation for pups will vary throughout lactation. Further studies examining intrinsic factors such as blubber thickness and activity levels are necessary before developing reliable biophysical models for grey seals.
Resumo:
MACHADO, Antônio V. et al. Estudio del Secado de Anacardo (Anacardium occidentale L.) mediante Secador Solar de Radiación Directa. Información Tecnológica, v. 21, n. 1, p. 31-37, 2010.
Resumo:
Living organisms are open dissipative thermodynamic systems that rely on mechanothermo-electrochemical interactions to survive. Plant physiological processes allow plants to survive by converting solar radiation into chemical energy, and store that energy in form that can be used. Mammals catabolize food to obtain energy that is used to fuel, build and repair the cellular components. The exergy balance is a combined statement of the first and second laws of thermodynamics. It provides insight into the performance of systems. In this paper, exergy balance equations for both mammal’s and green plants are presented and analyzed.
Resumo:
A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.
Resumo:
The Persian Gulf (PG) is a semi-enclosed shallow sea which is connected to open ocean through the Strait of Hormuz. Thermocline as a suddenly decrease of temperature in subsurface layer in water column leading to stratification happens in the PG seasonally. The forcing comprise tide, river inflow, solar radiation, evaporation, northwesterly wind and water exchange with the Oman Sea that influence on this process. In this research, analysis of the field data and a numerical (Princeton Ocean Model, POM) study on the summer thermocline development in the PG are presented. The Mt. Mitchell cruise 1992 salinity and temperature observations show that the thermocline is effectively removed due to strong wind mixing and lower solar radiation in winter but is gradually formed and developed during spring and summer; in fact as a result of an increase in vertical convection through the water in winter, vertical gradient of temperature is decreased and thermocline is effectively removed. Thermocline development that evolves from east to west is studied using numerical simulation and some existing observations. Results show that as the northwesterly wind in winter, at summer transition period, weakens the fresher inflow from Oman Sea, solar radiation increases in this time interval; such these factors have been caused the thermocline to be formed and developed from winter to summer even over the northwestern part of the PG. The model results show that for the more realistic monthly averaged wind experiments the thermocline develops as is indicated by summer observations. The formation of thermocline also seems to decrease the dissolved oxygen in water column due to lack of mixing as a result of induced stratification. Over most of PG the temperature difference between surface and subsurface increases exponentially from March until May. Similar variations for salinity differences are also predicted, although with smaller values than observed. Indeed thermocline development happens more rapidly in the Persian Gulf from spring to summer. Vertical difference of temperature increases to 9 centigrade degrees in some parts of the case study zone from surface to bottom in summer. Correlation coefficients of temperature and salinity between the model results and measurements have been obtained 0.85 and 0.8 respectively. The rate of thermcline development was found to be between 0.1 to 0.2 meter per day in the Persian Gulf during the 6 months from winter to early summer. Also it is resulted from the used model that turbulence kinetic energy increases in the northwestern part of the PG from winter to early summer that could be due to increase in internal waves activities and stability intensified through water column during this time.
Resumo:
Food irradiation is a treatment that involves subjecting in-bulk or packaged food to a controlled dose of ionizing radiation, with a clearly defined goal. It has been used for disinfestation and sanitization of food commodities and to retard postharvest ripening and senescence processes, being a sustainable alternative to chemical agents 1 . Doses up to 10 kGy are approved by several international authorities for not offering negative effects to food from a nutrition and toxicology point of view 2 . However, the adoption of this technology for food applications has been a slow process due to some misunderstandings by the consumer who often chooses non-irradiated foods. In this study, the effects of the ionizing radiation treatment on physical, chemical and bioactive properties of dried herbs and its suitability for preserving quality attributes of fresh vegetables during cold storage were evaluated. The studied herbs, perennial spotted rockrose (Tuberaria lignosa (Sweet) Samp.) and common mallow (Malva neglecta Wallr.) were freeze-dried and then irradiated up to 10 kGy in a Cobalt-60 chamber. The selected vegetables, watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. Reut.) were rinsed in tap water, packaged in polyethylene bags, submitted to irradiation doses up to 6 kGy and then were stored at 4 C for a period of up to 12 days. Physical, chemical and bioactive parameters of irradiated and non-irradiated samples were evaluated using different methodologies the colour was measured with a colorimeter, individual chemical compounds were analyzed by chromatographic techniques, antioxidant properties were evaluated using in vitro assays based on different reaction mechanisms, and other quality analyses were performed following official methods of analysis. The irradiation treatment did not significantly affect the colour of the perennial spotted rockrose samples, or its phenolic composition and antioxidant activity 3 . Medium doses preserved the colour of common mallow and a low dose did not induce any adverse effect in the organic acids profile. The green colour of the irradiated vegetables was maintained during cold storage but the treatment had pros and cons in other quality attributes. The 2 kGy dose preserved free sugars and favoured polyunsaturated fatty acids (PUFA) while the 5 kGy dose favoured tocopherols and preserved the antioxidant properties in watercress samples. The 6 kGy dose was a suitable option for preserving PUFA and the ω-6 ω-3 fatty acids ratio in buckler sorrel samples. This comprehensive experimental work allowed selecting appropriate processing doses for the studied plant foods in order to preserve its quality attributes and edibility.
Resumo:
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9 degrees 50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (RXAS) and X-ray diffraction (mu XRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe -bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of delta Fe-57 values up to 6 parts per thousand. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.
Resumo:
Boletus edulis Bull: Fr. is an edible mushroom quite appreciated for its organoleptic and nutritional properties. However, the seasonality and perishability cause some difficulties in its distribution and marketing in fresh form; losses associated with this type of food during marketing can reach 40% [1]. Irradiation is recognized as a safe and effective method for food preservation, being used worldwide to increase shelf life of fresh and dehydrated products (e.g. fruits, vegetables and spices) [2]. In particular, gamma irradiation has already been applied to cultivated mushrooms (especially Agaricus, Lentinula and Pleurotus Genus) and proved to be an interesting conservation technology [3]. However, the studies with added-value wild species are scarce. In this work, the effects of gamma irradiation on chemical and antioxidant properties of wild B. edulis, were evaluated. Fruiting bodies were obtained in Trás-os-Montes, in the Northeast of Portugal, in November 2012. The irradiation was performed in experimental equipment with 60Co sources at 1 and 2 kGy. All the results were compared with nonirradiated samples (control). Macronutrients and energy value were determined following official procedures of food analysis; fatty acids were analyzed by gas-chromatography coupled to flame ionization detection (GC-FID), while sugars and tocopherols were determined by high performance liquid chromatography (HPLC) coupled to refraction index (RI) and fluorescence detectors, respectively. Antioxidant activity was evaluated in the methanolic extracts by in vitro assays measuring DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, reducing power, inhibition of β- carotene bleaching and inhibition of lipid peroxidation using thiobarbituric acid reactive substances (TBARS) assay. Total phenolics were also determined by the Folin-Ciocalteu assay. The nutritional profiles were not affected in high extension. Fatty acids and sugars were slightly affected, decreasing with the increasing doses. The performed assays for antioxidant activity, indicate that irradiated samples tended to have lower scavenging activity and reducing power, but higher lipid peroxidation inhibition. Despite the detected differences in individual compounds, the results of nutritional parameters, the most relevant in terms of mushroom acceptability by consumers, were less affected, indicating an interesting potential of gamma-irradiation to be used as an effective conservation technology for the studied mushrooms.
Resumo:
Time series of physico-chemical data and concentrations (cell L-1) of the toxic dinoflagellate Alexandrium minutum collected in the Rance macrotidal estuary (Brittany, France) were analyzed to understand the physico-chemical processes of the estuary and their relation to changes in bloom development from 1996 to 2009. The construction of the tidal power plant in the north and the presence of a lock in the south have greatly altered hydrodynamics, blocking the zone of maximum turbidity upstream, in the narrowest part of the estuary. Alexandrium minutum occurs in the middle part of the estuary. Most physical and chemical parameters of the Rance estuary are similar to those observed elsewhere in Brittany with water temperatures between 15–18 °C, slightly lowered salinities (31.8–33.1 PSU), low river flow rates upstream and significant solar radiation (8 h day-1). A notable exception is phosphate input from the drainage basin which seems to limit bloom development: in recent years, bloom decline can be significantly correlated with the decrease in phosphate input. On the other hand, the chemical processes occurring in the freshwater-saltwater interface do not seem to have an influence on these occurrences. The other hypotheses for bloom declines are discussed, including the prevalence of parasitism, but remain to be verified in further studies.
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
We present a new radiation scheme for the Oxford Planetary Unified Model System for Venus, suitable for the solar and thermal bands. This new and fast radiative parameterization uses a different approach in the two main radiative wavelength bands: solar radiation (0.1-5.5 mu m) and thermal radiation (1.7-260 mu m). The solar radiation calculation is based on the delta-Eddington approximation (two-stream-type) with an adding layer method. For the thermal radiation case, a code based on an absorptivity/emissivity formulation is used. The new radiative transfer formulation implemented is intended to be computationally light, to allow its incorporation in 3D global circulation models, but still allowing for the calculation of the effect of atmospheric conditions on radiative fluxes. This will allow us to investigate the dynamical-radiative-microphysical feedbacks. The model flexibility can be also used to explore the uncertainties in the Venus atmosphere such as the optical properties in the deep atmosphere or cloud amount. The results of radiative cooling and heating rates and the global-mean radiative-convective equilibrium temperature profiles for different atmospheric conditions are presented and discussed. This new scheme works in an atmospheric column and can be easily implemented in 3D Venus global circulation models. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Renewable energy technologies have long-term economic and environmental advantages over fossil fuels, and solar power is the most abundant renewable resource, supplying 120 PW over earth’s surface. In recent years the cost of photovoltaic modules has reached grid parity in many areas of the world, including much of the USA. A combination of economic and environmental factors has encouraged the adoption of solar technology and led to an annual growth rate in photovoltaic capacity of 76% in the US between 2010 and 2014. Despite the enormous growth of the solar energy industry, commercial unit efficiencies are still far below their theoretical limits. A push for thinner cells may reduce device cost and could potentially increase device performance. Fabricating thinner cells reduces bulk recombination, but at the cost of absorbing less light. This tradeoff generally benefits thinner devices due to reduced recombination. The effect continues up to a maximum efficiency where the benefit of reduced recombination is overwhelmed by the suppressed absorption. Light trapping allows the solar cell to circumvent this limitation and realize further performance gains (as well as continue cost reduction) from decreasing the device thickness. This thesis presents several advances in experimental characterization, theoretical modeling, and device applications for light trapping in thin-film solar cells. We begin by introducing light trapping strategies and discuss theoretical limits of light trapping in solar cells. This is followed by an overview of the equipment developed for light trapping characterization. Next we discuss our recent work measuring internal light scattering and a new model of scattering to predict the effects of dielectric nanoparticle back scatterers on thin-film device absorption. The new model is extended and generalized to arbitrary stacks of stratified media containing scattering structures. Finally, we investigate an application of these techniques using polymer dispersed liquid crystals to produce switchable solar windows. We show that these devices have the potential for self-powering.
Resumo:
PV energy is the direct conversion of solar radiation into electricity. In this paper, an analysis of the influence of parameters such as global irradiance or temperature in the performance of a PV installation has been carried out. A PV module was installed in a building at the University of Málaga, and these parameters were experimentally determined for different days and different conditions of irradiance and temperature. Moreover, IV curves were obtained under these conditions to know the open-circuit voltage and the short-circuit current of the module. With this information, and using the first law of thermodynamics, an energy analysis was performed to determine the energy efficiency of the installation. Similarly, using the second law of thermodynamics, an exergy analysis is used to obtain the exergy efficiency. The results show that the energy efficiency varies between 10% and 12% and the exergy efficiency between 14% and 17%. It was concluded that the exergy analysis is more suitable for studying the performance, and that only electric exergy must be considered as useful exergy. This exergy efficiency can be improved if heat is removed from the PV module surface, and an optimal temperature is reached.
Resumo:
The photochemistry of pesticides triadimenol and triadimefon was studied on cellulose and beta-cyclodextrin (beta-CD) in controlled and natural conditions, using diffuse reflectance techniques and chromatographic analysis. The photochemistry of triadimenol occurs from the chlorophenoxyl moiety, while the photodegradation of triadimefon also involves the carbonyl group. The formation of 4-chlorophenoxyl radical is one of the major reaction pathways for both pesticides and leads to 4-chlorophenol. Triadimenol also undergoes photooxidation and dechlorination, leading to triadimefon and dechlorinated triadimenol, respectively. The other main reaction process of triadimefon involves alpha-cleavage from the carbonyl group, leading to decarbonylated compounds. Triadimenol undergoes photodegradation at 254 nm but was found to be stable at 313 nm, while triadimefon degradates in both conditions. Both pesticides undergo photochemical decomposition under solar radiation, being the initial degradation of rate per unit area of triadimefon 1 order of magnitude higher than the observed for triadimenol in both supports. The degradation rates of the pesticides were somewhat lower in beta-CD than on cellulose. Photoproduct distribution of triadimenol and triadimefon is similar for the different irradiation conditions, indicating an intramolecular energy transfer from the chlorophenoxyl moiety to the carbonyl group in the latter pesticide.
Resumo:
The photochemistry of 4-chlorophenol (4-CP) was studied on silica and cellulose, using time-resolved diffuse reflectance techniques and product degradation analysis. The results have shown that the photochemistry of 4-CP depends on the support, on the concentration, and also on the sample preparation method. Transient absorption and photoproduct results can be understood by assuming the formation of the carbene 4-oxocyclohexa-2,5-dienylidene in both supports. On cellulose, at concentrations lower than 10 mumol g(-1), the carbene leads to the unsubstituted phenoxyl radical, and phenol is the main degradation product. At higher concentrations a new transient resulting from phenoxyl radicals coupling was also observed, and dihydroxybiphenyls are also formed. The reaction of the carbene with ground-state 4-CP was also detected through the formation of 5-chloro-2,4'-dihydroxybiphenyl. 4-Chlorophenoxyl radical and degradations products resulting from its coupling were also detected. Oxygen has little effect on the photochemistry of 4-CP on cellulose. On silica the transient benzoquinone O-oxide was formed in the presence of oxygen. Benzoquinone and hydroquinone are the main degradation products. In well-dried samples the formation of hydroquinone is reduced. At higher concentrations the same products as detected on cellulose were observed. 4-CP undergoes slow photochemical decomposition under solar radiation in both supports. The same main degradation products were observed in these conditions.