997 resultados para Soil layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successive applications of pig litter to the soil surface can increase the phosphorus (P) content and alter its adsorption, promoting P transfer to surface or subsurface waters. The purpose of this study was to evaluate P accumulation and the pollution potential of a soil after application of pig litter. In March 2010, eight years after the installation of an experiment in Braço do Norte, Santa Catarina, SC, Brazil, on a Typic Hapludult, soil was sampled (layers 0-2.5, 2.5-5, 5-10, 10-15, 15-20 and 20-30 cm) after the following fertilization treatments: no pig litter fertilization, pig slurry application and pig manure application. In this period, 694 and 1,890 kg P2O5 ha-1 were applied in the treatments with pig slurry and pig manure, respectively. The P content was determined, based on Mehlich-1, anion exchange resin (AER), 0.01 mol L-1 CaCl2 and total P in the samples. The adsorption isotherm parameters were also determined by the Langmuir and Koski-Vähälä & Hartikainem models in the layers 0-2.5 and 20-30 cm. The application of 1,890 kg P2O5 ha-1 in the form of pig manure led to P accumulation, as evidenced by Mehlich-1, down to a depth of 15 cm, by AER and 0.01 mol L-1 CaCl2 down to 20 cm and by total P to 30 cm. After application of 1,890 kg P2O5 ha-1 in the form of pig manure, the values of maximum P adsorption capacity were lowest in the deepest layer (20-30 cm), indicating the occupation of part of the adsorption sites of the particles. The application of swine manure to the soil over eight years increased the P quantity in the soil solution of the surface layer, indicating environmental contamination risk for surface and subsurface waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between soil invertebrates and environmental variations are relatively unknown in the assessment of soil quality. The objective of this study was to evaluate soil quality in areas with different soil management systems, based on soil fauna as indicator, in Além Paraíba, Minas Gerais, Brazil. The soil invertebrate community was sampled using pitfall traps, in the dry and rainy seasons, from areas with five vegetation types (acacia, mimosa, eucalyptus, pasture, and secondary forest). The abundance of organisms and the total and average richness, Shannon's diversity index, the Pielou uniformity index, and change index V were determined. The fauna was most abundant in the areas of secondary forest and mimosa plantations in the dry season (111.3 and 31.7 individuals per trap per day, respectively). In the rainy season, the abundance of organisms in the three vegetation types did not differ. The highest values of average and total richness were recorded in the secondary forest in the dry season and in the mimosa stand in the rainy season. Shannon's index ranged from 1.57 in areas with acacia and eucalyptus in the rainy season to 3.19 in the eucalyptus area in the dry season. The uniformity index was highest in forest stands (eucalyptus, acacia and mimosa) in the dry season, but higher in the rainy season in the pasture and secondary forest than in the forest stands. The change index V indicated that the percentage of extremely inhibited groups was lowest in the area with mimosa, both in the dry and rainy season (36 and 23 %, respectively). Of all forest stands, the mimosa area had the most abundant soil fauna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC) on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm) from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0), H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of sewage sludge is a concern because it may affect the quality of organic matter and microbiological and biochemical soil properties. The effects of surface application of sewage sludge to an agricultural soil (at 18 and 36 t ha-1 dry basis) were assessed in one maize (Zea mays L.) growing season. The study evaluated microbial biomass, basal respiration and selected enzymatic activities (catalase, urease, acid and alkaline phosphatase, and β-glucosidase) 230 days after sewage sludge application and infrared spectroscopy was used to assess the quality of dissolved organic matter and humic acids. Sewage sludge applications increased the band intensity assigned to polysaccharides, carboxylic acids, amides and lignin groups in the soil. The organic matter from the sewage sludge had a significant influence on the soil microbial biomass; nevertheless, at the end of the experiment the equilibrium of the soil microbial biomass (defined as microbial metabolic quotient, qCO2) was recovered. Soil urease, acid and alkaline phosphatase activity were strongly influenced by sewage sludge applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S) with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS) in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-)), which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2-) concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms) was carried out by isotope ratio mass spectrometry (IRMS). In this work, the labeled material (K2(34)SO4) was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correct use of closed field chambers to determine N2O emissions requires defining the time of day that best represents the daily mean N2O flux. A short-term field experiment was carried out on a Mollisol soil, on which annual crops were grown under no-till management in the Pampa Ondulada of Argentina. The N2O emission rates were measured every 3 h for three consecutive days. Fluxes ranged from 62.58 to 145.99 ∝g N-N2O m-2 h-1 (average of five field chambers) and were negatively related (R² = 0.34, p < 0.01) to topsoil temperature (14 - 20 ºC). N2O emission rates measured between 9:00 and 12:00 am presented a high relationship to daily mean N2O flux (R² = 0.87, p < 0.01), showing that, in the study region, sampling in the mornings is preferable for GHG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a soil induces changes in the physical properties according to the management, tillage intensity and type of crop. The objective of this work was to measure the alterations of some of the soil physical properties and evaluate the physical quality by the S index, an indicator proposed by Dexter (2004), comparing the land uses: eucalyptus plantations at different ages, grazing pasture, annual crops, and an area of preserved secondary vegetation with an area of preserved native forest (National Forest Araripe - NFA) as control. The study was carried out on an Oxisol on the Fazenda Redenção, in Jardim, State of Ceará, Brazil. The experiment was arranged in a completely randomized design with seven treatments and three replications in the layers 0-0.1 and 0.1-0.2 m. The soil was analyzed for the following physical properties: bulk density, particle density, total pore volume, micro and macroporosity, soil water retention curves and water availability. Based on the S index, the hypothesis that the use of a soil deteriorates the physical quality was accepted. Clearly, native forest (NFA) was the land use with the best conditions in all physical properties studied, followed closely by the area reforested with 20 year-old eucalyptus. The use as grazing pasture affected the soil physical conditions most, especially in the surface layer (0-0.1 m), as evidenced by increased bulk density and a substantial reduction in soil porosity, mainly in macroporosity. Microporosity was not influenced by any of the uses and in any layer studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT) and conventional tillage (CT), since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile) in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI), mean weighted diameter (MWD), mean geometric diameter (MGD) in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC), flocculation index (FI) and bulk density (Bd)) and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH). The results indicated that more intense soil preparation (M < NT < PC) resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well-known nowadays that soil variability can influence crop yields. Therefore, to determine specific areas of soil management, we studied the Pearson and spatial correlations of rice grain yield with organic matter content and pH of an Oxisol (Typic Acrustox) under no- tillage, in the 2009/10 growing season, in Selvíria, State of Mato Grosso do Sul, in the Brazilian Cerrado (longitude 51º24' 21'' W, latitude 20º20' 56'' S). The upland rice cultivar IAC 202 was used as test plant. A geostatistical grid was installed for soil and plant data collection, with 120 sampling points in an area of 3.0 ha with a homogeneous slope of 0.055 m m-1. The properties rice grain yield and organic matter content, pH and potential acidity and aluminum content were analyzed in the 0-0.10 and 0.10-0.20 m soil layers. Spatially, two specific areas of agricultural land management were discriminated, differing in the value of organic matter and rice grain yield, respectively with fertilization at variable rates in the second zone, a substantial increase in agricultural productivity can be obtained. The organic matter content was confirmed as a good indicator of soil quality, when spatially correlated with rice grain yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd) and a typic dystrophic Red Latosol (LVdf) to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m) consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30), rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals), characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.