899 resultados para Small Area Populations
Resumo:
Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (<= 100 m) and deep (> 100 m) populations of archaea; ii) stratification of unsaturated GDGTs with varying redox conditions; and iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We thus provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. This article is protected by copyright. All rights reserved.
Resumo:
We present four melt climatology estimates based on a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. Drift and meltdown is simulated using vertical profiles of ocean currents, temperature, and salinity, which goes beyond the present standard in iceberg modeling. The climatology estimates based on simulations of small (SMA), 'small-to-medium'-sized (MED12 & MED123), and small-to-giant icebergs (ALL) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of iceberg melt and a shift of the mass input to the area north of 58°S, while less melt water is released into the coastal areas. This highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. The four monthly melt climatologies [mm/day] are available as netCDF files with 1°x1° spatial resolution and can be used, e.g., for sensitivity studies with uncoupled sea ice-ocean models, or as spatio-temporal templates for the redistribution of land ice from the Antarctic ice sheet over the Southern Ocean in climate models.
Resumo:
Sediment whole-round cores from a dedicated hole (798B) were obtained for detailed microbiological analysis, down to 518 m below the seafloor (mbsf). These sediments have characteristic bacterial profiles in the top 6 mbsf, with high but rapidly decreasing bacterial populations (total and dividing bacteria, and concentrations of different types of viable heterotrophic bacteria) and potential bacterial activities. Rates of thymidine incorporation into bacterial DNA and anaerobic sulfate reduction are high in the surface sediments and decrease rapidly down to 3 mbsf. Methanogenesis from CO2/H2 peaks below the maximum in sulfate reduction and although it decreases markedly down the core, is present at low rates at all but one depth. Consistent with these activities is the removal of pore-water sulfate, methane gas production, and accumulation of reduced sulfide species. Rates of decrease in bacterial populations slow down below 6 mbsf, and there are some distinct increases in bacterial populations and activities that continue over considerable depth intervals. These include a large and significant increase in total heterotrophic bacteria below 375 mbsf, which corresponds to an increase in the total bacterial population, bacterial viability, a small increase in potential rates of sulfate reduction, and the presence of thermogenic methane and other gases. Bacterial distributions seem to be controlled by the availability of terminal electron acceptors (e.g., sulfate), the bioavailability of organic carbon (which may be related to the dark/light bands within the sediment), and biological and geothermal methane production. Significant bacterial populations are present even in the deepest samples (518 mbsf) and hence it seems likely that bacteria may continue to be present and active much deeper than the sediments studied here. These results confirm and extend our previous results of bacterial activity within deep sediments of the Peru Margin from Leg 112, and to our knowledge this is the first comprehensive report of the presence of active bacterial populations from the sediment surface to in excess of 500 mbsf and sediments > 4 m.y. old.
Resumo:
Aim: Concepts about patterns and rates of post-glacial tree population migration are changing as a result of the increasing amount of palaeobotanical information being provided by macroscopic plant remains. Here we combine macrofossil, pollen and stomata records from five sites in north-eastern European Russia and summarize the results for the late-glacial-early Holocene transition. The late-glacial-early Holocene transition encompasses the first indications of trees (tree-type Betula, Picea abies, Abies sibirica and Larix sibirica) and subsequent forest development. Considerable time-lags between the first macrobotanical and/or stomata finds of spruce (Picea abies) and the establishment of a closed forest are reconsidered. Location: Pechora basin, north-eastern European Russia. Methods: We used plant macrofossil, stomata, pollen and radiocarbon analyses to reconstruct late-glacial and early Holocene tree establishment and forest development. The data were derived from lake sediment and peat archives. Results: Palaeobotanical data reveal an early Holocene presence (11,500-10,000 cal. yr bp) of arboreal taxa at all five sites. One site presently located in the northernmost taiga zone, shows the presence of spruce and reproducing tree birch during the late-glacial. Given the current view of post-glacial population dynamics and migration rates, it seems likely that the source area of these early tree populations in north-eastern European Russia was not located in southern Europe but that these populations had local origins. Results thus support the emerging view that the first post-glacial population expansions in non-glaciated regions at high latitudes do not reflect migration from the south but were a result of an increase in the size and density of small persisting outlying tree populations. Main conclusions: Results suggest that the area east of the margin of the Scandinavian ice sheet to the Ural Mountains had isolated patches of trees during the late-glacial and early Holocene and that these small populations acted as initial nuclei for population expansion and forest development in the early Holocene.
Resumo:
Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR (Q-PCR)-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250-350 cm. The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments. .
Resumo:
Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24 %, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level. Molecular clock application revealed that the evolutionary history of O. similis s.l. is possibly closely associated with the reorganization of the ocean circulation in the mid Miocene and may be an example of allopatric speciation in the pelagic zone.
Resumo:
One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration
Resumo:
Two Bolivian samples belonging to the two main Andean linguistic groups (Aymaras and Quechuas) were studied for mtDNA and Y-chromosome uniparental markers to evaluate sex-specific differences and give new insights into the demographic processes of the Andean region. mtDNA-coding polymorphisms, HVI-HVII control regions, 17 Y-STRs, and three SNPs were typed in two well-defined populations with adequate size samples. The two Bolivian samples showed more genetic differences for the mtDNA than for the Y-chromosome. For the mtDNA, 81% of Aymaras and 61% of Quechuas presented haplogroup B2. Native American Y-chromosomes were found in 97% of Aymaras (89% hg Q1a3a and 11% hg Q1a3*) and 78% of Quechuas (100% hg Q1a3a). Our data revealed high diversity values in the two populations, in agreement with other Andean studies. The comparisons with the available literature for both sets of markers indicated that the central Andean area is relatively homogeneous. For mtDNA, the Aymaras seemed to have been more isolated throughout time, maintaining their genetic characteristics, while the Quechuas have been more permeable to the incorporation of female foreigners and Peruvian influences. On the other hand, male mobility would have been widespread across the Andean region according to the homogeneity found in the area. Particular genetic characteristics presented by both samples support a past common origin of the Altiplano populations in the ancient Aymara territory, with independent, although related histories, with Peruvian (Quechuas) populations.
Resumo:
Antarctic krill Euphausia superba are a key component of food webs in the maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary production in the region. Previous work has shown a general in-shore migration of krill in winter in this region; however, the very near-shore has not often been sampled as part of these surveys. We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated densities exceeding 60 krill m-3, while acoustic estimates were an order of magnitude higher. Krill within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were observed near the seafloor during the day with aggregations extending to the sediment interface, and exhibited diel vertical migration higher into the water column at night. We suggest these high winter krill abundances within fjords are indicative of an active seasonal migration by krill in the peninsula region. Potential drivers for such a migration include reduced advective losses and costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may also affect stock and recruitment assessments and may have implications for managing the krill fishery in this area.
Resumo:
Antarctic krill Euphausia superba are a key component of food webs in the maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary production in the region. Previous work has shown a general in-shore migration of krill in winter in this region; however, the very near-shore has not often been sampled as part of these surveys. We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated densities exceeding 60 krill m-3, while acoustic estimates were an order of magnitude higher. Krill within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were observed near the seafloor during the day with aggregations extending to the sediment interface, and exhibited diel vertical migration higher into the water column at night. We suggest these high winter krill abundances within fjords are indicative of an active seasonal migration by krill in the peninsula region. Potential drivers for such a migration include reduced advective losses and costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may also affect stock and recruitment assessments and may have implications for managing the krill fishery in this area.
Resumo:
Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like star that hosts a transiting planet candidate in a 10.6 day orbit. From spectroscopy, we estimate the stellar temperature to be 5687 ± 50 K, its metallicity to be [m/H] = 0.32 ± 0.08, and the projected rotational velocity to be v sin i <2.4 km s-1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be , the radius to be 1.066 ± 0.012 Ro, and the age to be Gyr. We estimate the radius of the 10.6 day planet as 2.37 ± 0.13 R⊕. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at the Keck Observatory, we measure the mass of this planet to be 6.8 ± 1.4 M⊕. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 ± 0.12 MJ in a nearly circular 524 day orbit and a massive companion with a period >10 years and mass >12.1 MJ. The 12 exoplanets with radii ⊕ and precise mass measurements appear to fall into two populations, with those ⊕ following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 ± 0.73 g cm-3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.
Resumo:
Informal caregiving can be a demanding role which has been shown to impact on physical, psychological and social wellbeing. Methodological weaknesses including small sample sizes and subjective measures of mental health have led to inconclusive evidence about the relationship between informal caregiving and mental health. This paper reports on a study carried out in a UK region which investigated the relationship between informal caregiving and mental ill health. The analysis was conducted by linking three datasets, the Northern Ireland Longitudinal Study, the Northern Ireland Enhanced Prescribing Database and the Proximity to Service Index from the Northern Ireland Statistics and Research Agency. Our analysis used both a subjective measure of mental ill health, i.e. a question asked in the 2011 Census, and an objective measure, whether the respondents had been prescribed antidepressants by a General Practitioner between 2010 and 2012. We applied binary logistic multilevel modelling to these two responses to test whether, and for what sub-groups of the population, informal caregiving was related to mental ill health. The results showed that informal caregiving per se was not related to mental ill health although there was a strong relationship between the intensity of the caregiving role and mental ill health. Females under 50, who provided over 19 hours of care, were not employed or worked part-time and who provided care in both 2001 and 2011 were at a statistically significantly elevated risk of mental ill health. Caregivers in remote areas with limited access to shops and services were also at a significantly increased risk as evidenced by prescription rates for antidepressants. With community care policies aimed at supporting people to remain at home, the paper highlights the need for further research in order to target resources appropriately.
Resumo:
Understanding the mechanism associated with rates of weathering and evolution of rocks→sediment→soil→paleosol in alpine environments raises questions related to the impact of microbial mediation versus various diverse abiotic chemical/physical processes, even including the overall effect of cosmic impact/airburst during the early stage of weathering in Late Glacial (LG) deposits. This study is of a chronosequence of soils/paleosols, with an age range that spans the post–Little Ice Age (post-LIA; <150 yr), the Little Ice Age (LIA; AD 1500–1850), the middle Neoglacial (∼3 ka)–Younger Dryas (YD; <12.8 ka), and the LG (<15 ka). The goal is to elicit trends in weathering, soil morphogenesis, and related eubacterial population changes over the past 13–15 k.yr. The older LG/YD paleosols in the sequence represent soil morphogenesis that started during the closing stage of Pleistocene glaciation. These are compared with undated soils of midto late Neoglacial age, the youngest of LIA and post-LIA age. All profiles formed in a uniform parentmaterial ofmetabasalt composition and in moraine, rockfall, protalus, and alluvial fan deposits. Elsewhere in Europe,North America, and Asia, the cosmic impact/airburst event at 12.8 ka often produced a distinctive, carbon-rich “black mat” layer that shows evidence of high-temperature melting. At this alpine site, older profiles of similar LG age contain scorched and melted surface sediments that are otherwise similar in composition to the youngest/thinnest profiles developing in the catchment today. Moreover, microbial analysis of the sediments offers new insight into the genesis of these sediments: the C and Cu (u = unweathered) horizons in LG profiles present at 12.8 ka (now Ah/Bw) show bacterial population structures that differ markedly from recent alluvial/protalus sample bacterial populations. We propose here that these differences are, in part, a direct consequence of the age/cosmic impact/weathering processes that have occurred in the chronosequence. Of the several questions that emerge from these sequences, perhaps the most important involve the interaction of biotic-mineral factors, which need to be understood if we are to generally fully appreciate the role played by microbes in rock weathering.
Resumo:
Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.