962 resultados para Slope efficiencies
Resumo:
Iowa is one of the more progressive recycling states in the U.S. due in large part to its environmental technical assistance programs for business. The Iowa Department of Economic Development (IDED), Iowa Department of Natural Resources (IDNR), the Recycle Reuse Technology Transfer Center (RRTTC) and the Iowa Waste Reduction Center (IWRC) work together to offer services that help businesses save money, increase operational efficiencies, enhance regulatory compliance and manage difficult waste management issues.
Resumo:
The aim of the study was to measure the energy used for growth of healthy fullterm and breast-fed Gambian infants. The weight gain (WG) of 14 infants (mean age +/- SEM 17 +/- 1 d, weight 3.581 +/- 0.105 kg) was measured over a 2-week period; the energy intake (EI) from breast milk was assessed for 24 h in the middle of the study period by weighing the infant before and after each breast-feed. On the same day, sleeping energy expenditure (SEE) and respiratory quotient (RQ) were measured for 30 min on five occasions through the 24-h period. EI averaged 502 +/- 25 kJ/kg.d, and SEE 230 +/- 6 kJ/kg.d; thus, an average of 272 kJ/kg.d were available for physical activity and the energy stored for growth. The total energy spent by infants while sleeping and for periods of physical activity was calculated to be 1.7 x SEE. The mean RQ measured on five occasions averaged 0.879 +/- 0.009. SEE was correlated with WG (r = 0.747, P less than 0.005), with a slope of the regression line of 5.5 kJ/g; this value can be considered as an estimate of the energy spent for new tissue synthesis in the resting infant. The efficiency of weight gain was lower in this study (67%) than in studies conducted on fast-growing preterm infants or children recovering from malnutrition.
Resumo:
ABSTRACTThis study reviewed the data on the Brazilian Ephemeroptera, based on the studies published before July, 2013, estimated the number of species still to be described, and identified which regions of the country have been the subject of least research. More than half the species are known from the description of only one developmental stage, with imagoes being described more frequently than nymphs. The Brazilian Northeast is the region with the weakest database. Body size affected description rates, with a strong tendency for the larger species to be described first. The estimated number of unknown Brazilian species was accentuated by the fact that so few species have been described so far. The steep slope of the asymptote and the considerable confidence interval of the estimate reinforce the conclusion that a large number of species are still to be described. This emphasizes the need for investments in the training of specialists in systematics and ecology for all regions of Brazil to correct these deficiencies, given the role of published papers as a primary source of information, and the fundamental importance of taxonomic knowledge for the development of effective measures for the conservation of ephemeropteran and the aquatic ecosystems they depend on.
Resumo:
The landslide of Rosiana is considered the largest slope movement amongst those known in historical times in Gran Canana, Canary Islands. It has been activated at least 4 times in the last century, and in the movement of 1956, when about 3.106 m3 of materials were involved, 250 people had to be evacuated and many buildings were destroyed. The present geological hazard has lead to specific studies of the phenomenon which, once characterised, can be used as a guide for the scientific and technical works that are to be made in this or similar areas. This paper wants to increase the knowledge about the unstable mass of Rosiana by using geophysical techniques based on the method of seismic by refraction. The geophysical measues have been interpreted with the aid of the available geomorphologic data, thus obtaining a first approximation to the geometry of the slope movements
Resumo:
Se describe la geomorfología del relieve de la paleolaguna de Otuma y se evalúa la preservación de sus registros calcáreos y su potencialidad para la reconstrucción paleoceanográfica y paleoecológica. Un pequeño acantilado marino y una plataforma de abrasión de suave pendiente con predominancia de arena y grava, sugieren un fondo submareal somero de 3,5 m de profundidad a 80 m de distancia de la orilla. La distribución de los registros calcáreos in situ, sobre el fondo de la paleolaguna sugiere un patrón de zonación ecológica. La abundancia de Argopecten purpuratus en los conchales demuestra su dominancia y la presencia de un antiguo y muy productivo banco natural de concha de abanico con una estructura de tallas 40 -140 mm. La preservación de las conchas permitió el análisis de sus anillos o líneas de crecimiento y la reconstruccion de sus ritmos y patrones de crecimiento que son valiosos para la reconstrucción de la variabilidad ambiental.
Resumo:
Los sedimentos submarinos colectados a fines de setiembre 2004 a profundidades <50 m, al sur de la desembocadura del río Sama (18°10’S), fueron predominantemente arenosos (>60%). El mayor contenido de la fracción fina, de limo y arcilla (±35%), se ubicó en las zonas más profundas del área en estudio y en los extremos norte (frente a Cerro Cortado) y al sur (Los Palos), que incluyen también zonas de menor profundidad. En la zona central, la pendiente tiene la mayor inclinación de toda la zona estudiada, y el tamaño promedio del grano del sedimento es más grande; estas condiciones constituyen un reflejo de la mayor energía hidrodinámica que existe. En la zona central también se observa la típica disminución del tamaño de grano, según se incrementa la profundidad y la lejanía de la línea de costa. La distribución de materia orgánica mostró tendencia similar a la de fracción fina, con un máximo de 5,02%.
Resumo:
Basados en la compilación de resultados de análisis sedimentológicos (granulometría, contenido orgánico) de 1191 estaciones realizadas por IMARPE, de 1975 a 2001, la compilación de información sobre el tema entre los 3°30’S y los 15°30’S y con el conocimiento de la morfología del fondo marino de esta región, se definen tres grandes áreas: al norte de los 6°15’S, de 6°15’S a 9°30’S y entre 9°30’ y 15°30’S. Entre los 3°30’ y los 6°15’S los contenidos de materia orgánica son mayores a 5% y menores a 10%, el carbono orgánico predomina con valores <1% a 2%. Los sedimentos corresponden a facies de fango y arenas, de origen terrígeno. El ancho de la plataforma es variable aproximadamente de 3 a 30 mn (14 mn promedio), la pendiente del talud superior es bastante pronunciada, presenta caídas bruscas. El relieve es disparejo, con fuertes desmembramientos en el borde exterior de la plataforma y el talud superior debido a que se encuentra surcado por cañones submarinos. En el extremo noroccidental de esta zona, se halla el Banco de Máncora cuyo fondo es rocoso e irregular. Entre los 6°30’S y los 9°30’S los contenidos de materia orgánica se incrementan de 5% a 15%, los contenidos de carbono orgánico son >2% y llegan a 5%, en algunos casos localmente superan este valor casi en tres puntos más. En los sedimentos del sector norte de esta zona predominan facies texturales de arenas y fango de origen terrígeno y también biógenos (foraminíferos), hacia el sur de esta zona predominan sedimentos de origen biogénico y autigénico (principalmente fosforita). El ancho de la plataforma se incrementa hasta alcanzar su máxima magnitud, esta es variable, aproximadamente de 22 a 70 mn. El talud superior tiene un declive moderado. El relieve del fondo marino en el borde exterior de la plataforma y talud superior se hallan surcados por cañones submarinos (7° - 9°S). Frente a Punta Chao aproximadamente a 65 mn se encuentra el Banco de Chimbote cuyo fondo es rocoso e irregular. La granulometría de los sedimentos y sus estadígrafos muestran un cambio definido desde los 10°30’S. Desde los 9°30’ a los 15°45’S los valores de materia orgánica por lo general sobrepasan el 15% y pueden alcanzar hasta 32,12%, los contenidos de carbono orgánico varían de 5% a 11,14%. En esta zona se encuentra presente, principalmente fango limoso y fango arcilloso terrígeno y biógeno (diatoméico). El ancho de la plataforma varía de modo general entre 10 y 50 mn (24 mn promedio aproximadamente). La pendiente del talud superior es suave en casi toda su extensión, el relieve del fondo marino es bastante uniforme, surcado por algunos pequeños cañones submarinos que no afectan la regularidad del relieve. De la interpretación de la data, análisis de parámetros estadísticos generados y condiciones de los sedimentos, se encontró coincidencia en la zona de la plataforma y talud superior de más de uno de los factores medio ambiente deposicional que permiten la preservación del contenido de materia orgánica tales como: Tipo y condiciones geoquímicas del sedimento y fondo marino, morfología del fondo marino, hidrodinámica, fuente de suministro, tasa de sedimentación, bioturbación.
Resumo:
Crohn's disease (CD) is a chronic progressive destructive disease. Currently available instruments measure disease activity at a specific point in time. An instrument to measure cumulative structural damage to the bowel, which may predict long-term disability, is needed. The aim of this article is to outline the methods to develop an instrument that can measure cumulative bowel damage. The project is being conducted by the International Program to develop New Indexes in Crohn's disease (IPNIC) group. This instrument, called the Crohn's Disease Digestive Damage Score (the Lémann score), should take into account damage location, severity, extent, progression, and reversibility, as measured by diagnostic imaging modalities and the history of surgical resection. It should not be "diagnostic modality driven": for each lesion and location, a modality appropriate for the anatomic site (for example: computed tomography or magnetic resonance imaging enterography, and colonoscopy) will be used. A total of 24 centers from 15 countries will be involved in a cross-sectional study, which will include up to 240 patients with stratification according to disease location and duration. At least 120 additional patients will be included in the study to validate the score. The Lémann score is expected to be able to portray a patient's disease course on a double-axis graph, with time as the x-axis, bowel damage severity as the y-axis, and the slope of the line connecting data points as a measure of disease progression. This instrument could be used to assess the effect of various medical therapies on the progression of bowel damage. (Inflamm Bowel Dis 2011).
Resumo:
OBJECTIVE: Diaphragmatic navigators are frequently used in free-breathing coronary MR angiography, either to gate or prospectively correct slice position or both. For such approaches, a constant relationship between coronary and diaphragmatic displacement throughout the respiratory cycle is assumed. The purpose of this study was to evaluate the relationship between diaphragmatic and coronary artery motion during free breathing. SUBJECTS AND METHODS: A real-time echoplanar MR imaging sequence was used in 12 healthy volunteers to obtain 30 successive images each (one per cardiac cycle) that included the left main coronary artery and the domes of both hemidiaphragms. The coronary artery and diaphragm positions (relative to isocenter) were determined and analyzed for effective diaphragmatic gating windows of 3, 5, and 7 mm (diaphragmatic excursions of 0-3, 0-5, and 0-7 mm from the end-expiratory position, respectively). RESULTS: Although the mean slope correlating the displacement of the right diaphragm and the left main coronary artery was approximately 0.6 for all diaphragmatic gating windows, we also found great variability among individual volunteers. Linear regression slopes varied from 0.17 to 0.93, and r2 values varied from .04 to .87. CONCLUSION: Wide individual variability exists in the relationship between coronary and diaphragmatic respiratory motion during free breathing. Accordingly, coronary MR angiographic approaches that use diaphragmatic navigator position for prospective slice correction may benefit from patient-specific correction factors. Alternatively, coronary MR angiography may benefit from a more direct assessment of the respiratory displacement of the heart and coronary arteries, using left ventricular navigators.
Resumo:
We present the results of a geological and geotechnical characterization of the metallurgic waste from the Sierra Minera de Cartagena-La Union. We have studied eight tailings dams from which we collected and analysed 42 samples of metallurgic waste. We measured grainsize distribution, the specific gravity of solid particles, plasticity index, permeability, both in situ and in the laboratory, direct shear characteristicsand moisture content. According to size distribution the tailings can be classified as sandy silt. Their plasticity index ranges from medium to nil. The internal friction angle varies between 28 and 42 degrees. Cohesion is between 0 and 2.2 t/m2. The specific gravity of the solid particles ranges widely from 1.8 to 4 g/cm3. The saturated hydraulic conductivity values vary between 1.3x 10-5 and 3.2x 10-9 m/s.The water content measured in situ shows that the degree of saturation remains relatively high despite low rainfall and high evaporation rates. Several tailings dams have failed. The leading causes of tailings-dam failure are: 1) slope instability; 2) overflow; 3) erosion; and 4) subsidence or collapse. The main factor leading to dam failure is that the tailings stored in the ponds are highly saturated
Resumo:
In the process of phosphate rock acidulation, several impure P compounds may be formed along with the desirable Ca and NH4 phosphates. Such compounds normally reduce the content of water-soluble P and thus the agronomic effectiveness of commercial fertilizers. In order to study this problem, a greenhouse experiment consisting of three consecutive corn crops was conducted in samples of a Red-Yellow Latosol (Typical Hapludox) in a completely randomized design (6 x 2 x 2), with four replicates. Six commercial fertilizers were added to 2 kg of soil at a rate of 70 mg kg-1 P, based on the content of soluble P in neutral ammonium citrate plus water (NAC + H2O) of the fertilizers. Fertilizer application occurred either in the original form or leached to remove the water-soluble fraction, either by mixing the fertilizer with the whole soil in the pots or with only 1 % of its volume. The corn plants were harvested 40 days after emergence to determine the shoot dry matter and accumulated P. For the first crop and localized application, the elimination of water-soluble P from the original fertilizers resulted in less bioavailable P for the plants. For the second and third crops, the effects of P source, leaching and application methods were not as evident as for the first, suggesting that the tested P sources may have similar efficiencies when considering successive cropping. The conclusion was drawn that the water-insoluble but NAC-soluble fractions of commercial P fertilizers are not necessarily inert because they can provide P in the long run.
Resumo:
Permian to Late Cretaceous allochthonous sedimentary and volcanic rocks exposed in the Batain area (eastern Oman Margin) have received comparably little attention in the past. They largely were considered as part of the Hamrat Duru Group (Hawasina Complex) of the northern Oman Mountains. Structural, kinematic and biostratigraphic results from our mapping campaign in the Batain area have now revealed, that emplacement of these units occurred in a WNW direction during latest Cretaceous/Early Paleogene time. This clearly contrasts with previous models that postulated a S-ward directed obduction in Campanian times such as recorded from the Hawasina Complex and Semail Ophiolite in the Oman Mountains. We herewith establish the `'Batain Group'' comprising all Permian to Late Cretaceous allochthonous units in the Batain Area. These are: 1.) the Permian Qarari Formation deposited in the toe of a slope setting; 2.) the Late Permian to late Liassic Al Jil Formation comprising periplatform detritus and very coarse breccias; 3.) the Scythian to Norian Matbat Formation formed by slope deposits; 4.) the Early Jurassic to early Oxfordian Guwayza Formation with high energy platform detritus; 5.) the Mid-Jurassic to earliest Cretaceous Ruwaydah Formation seamount; and 6.) the Oxfordian to Santonian Wahrah Formation, mainly radiolarites; and 7.) the Santonian to latest Maastrichtian Fayah Formation built by flysch-type sediments. These sedimentary and volcanic rocks represent deposits of the former ``Batain basin'' off eastern-Oman, destroyed by compressional tectonics at the Cretaceous/Paleogene transition. For tectono-stratigraphic reasons the Batain Group does not form part of the Hawasina Complex.
Resumo:
Site-specific regression coefficient values are essential for erosion prediction with empirical models. With the objective to investigate the surface-soilconsolidation factor, Cf, linked to the RUSLE's prior-land-use subfactor, PLU, an erosion experiment using simulated rainfall on a 0.075 m m-1 slope, sandy loam Paleudult soil, was conducted at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul (EEA/UFRGS), in Eldorado do Sul, State of Rio Grande do Sul, Brazil. Firstly, a row-cropped area was excluded from cultivation (March 1995), the existing crop residue removed from the field, and the soil kept clean-tilled the rest of the year (to get a degraded soil condition for the intended purpose of this research). The soil was then conventional-tilled for the last time (except for a standard plot which was kept continuously cleantilled for comparison purposes), in January 1996, and the following treatments were established and evaluated for soil reconsolidation and soil erosion until May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) fresh-tilled soil, continuously in clean-tilled fallow (unit plot); (b) reconsolidating soil without cultivation; and (c) reconsolidating soil with cultivation (a crop sequence of three corn- and two black oats cycles, continuously in no-till, removing the crop residues after each harvest for rainfall application and redistributing them on the site after that). Simulated rainfall was applied with a Swanson's type, rotating-boom rainfall simulator, at 63.5 mm h-1 intensity and 90 min duration, six times during the two-and-half years of experimental period (at the beginning of the study and after each crop harvest, with the soil in the unit plot being retilled before each rainfall test). The soil-surface-consolidation factor, Cf, was calculated by dividing soil loss values from the reconsolidating soil treatments by the average value from the fresh-tilled soil treatment (unit plot). Non-linear regression was used to fit the Cf = e b.t model through the calculated Cf-data, where t is time in days since last tillage. Values for b were -0.0020 for the reconsolidating soil without cultivation and -0.0031 for the one with cultivation, yielding Cf-values equal to 0.16 and 0.06, respectively, after two-and-half years of tillage discontinuation, compared to 1.0 for fresh-tilled soil. These estimated Cf-values correspond, respectively, to soil loss reductions of 84 and 94 %, in relation to soil loss from the fresh-tilled soil, showing that the soil surface reconsolidated intenser with cultivation than without it. Two distinct treatmentinherent soil surface conditions probably influenced the rapid decay-rate of Cf values in this study, but, as a matter of a fact, they were part of the real environmental field conditions. Cf-factor curves presented in this paper are therefore useful for predicting erosion with RUSLE, but their application is restricted to situations where both soil type and particular soil surface condition are similar to the ones investigate in this study.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.