899 resultados para Sloan, Blake
Resumo:
The geochemical studies of Sites 534 and 391 and their comparison allow us to improve the chemical characterization of different geological formations dating from the early Callovian to the Maestrichtian along the continental margin of eastern North America. Three of the formations are favorable for the preservation of organic matter: (1) the unnamed formation (middle Callovian to Oxfordian), (2) the Blake-Bahama Formation (Berriasian to Barremian), and (3) the Hatteras Formation (Aptian to Cenomanian). The organic matter is mainly detrital, except for a few organic-rich layers where a contribution of aquatic material occurs. In these organic-rich layers, the petroleum potential is medium to good. Maturation has not quite reached the beginning of the oil window even for the deepest organic material.
Resumo:
The isotopic characteristics of CH4 (d13C values range from -101.3 per mil to -61.1 per mil PDB, and dD values range from -256 per mil to -136 per mil SMOW) collected during Ocean Drilling Program (ODP) Leg 164 indicate that the CH4 was produced by microbial CO2 reduction and that there is not a significant contribution of thermogenic CH4 to the sampled sediment gas from the Blake Ridge. The isotopic values of CO2 (d13C range -20.6 per mil to +1.24 per mil PDB) and dissolved inorganic carbon (DIC; d13C range -37.7 per mil to +10.8 per mil PDB) have parallel profiles with depth, but with an offset of 12.5 per mil. Distinct downhole variations in the carbon isotopic composition of CH4 and CO2 cannot be explained by closed-system fractionation where the CO2 is solely derived from the locally available sedimentary organic matter (d13C -2.0 per mil ± 1.4 per mil PDB) and the CH4 is derived from CO2 reduction. The observed isotopic profiles reflect the combined effects of upwards gas migration and decreased microbial activity with depth.
Resumo:
Fil: Blake, Cristina. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación. Instituto de Investigaciones en Humanidades y Ciencias Sociales (UNLP-CONICET); Argentina.
Resumo:
A late Albian-early Cenomanian record (~103.3 to 99.0 Ma), including organic-rich deposits and a d13C increase associated with oceanic anoxic event 1d (OAE 1d), is described from Ocean Drilling Program sites 1050 and 1052 in the subtropical Atlantic. Foraminifera are well preserved at these sites. Paleotemperatures estimated from benthic d18O values average ~14°C for middle bathyal Site 1050 and ~17°C for upper bathyal Site 1052, whereas surface temperatures are estimated to have ranged from 26°C to 31°C at both sites. Among planktonic foraminifera, there is a steady balance of speciation and extinction with no discrete time of major faunal turnover. OAE 1d is recognized on the basis of a 1.2 per mill d13C increase (~100.0-99.6 Ma), which is similar in age and magnitude to d13C excursions documented in the North Atlantic and western Tethys. Organic-rich "black shales" are present throughout the studied interval at both sites. However, deposition of individual black shale beds was not synchronous between sites, and most of the black shale was deposited before the OAE 1d d13C increase. A similar pattern is observed at the other sites where OAE 1d has been recognized indicating that the site(s) of excess organic carbon burial that could have caused the d13C increase has (have) yet to be found. Our findings add weight to the view that OAEs should be chemostratigraphically (d13C) rather than lithostratigraphically defined.
Resumo:
Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.
Resumo:
Fil: Blake, Cristina. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación. Instituto de Investigaciones en Humanidades y Ciencias Sociales (UNLP-CONICET); Argentina.
Resumo:
Fil: Blake, Cristina. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.
Resumo:
Four dominant depositions of carbonaceous claystones are recognized to have occurred during the early Aptian to middle Albian at Site 534. There are correlations of stable isotope ratios with organic carbon content and of clay content with clay mineralogy of the samples. Almost all organic carbon in these sequences has very negative terrestrial isotope ratios, and the clay of that age indicates predominance of aluminous montmorillonite, which is thought to be of terrigenous origin. It is suggested that development of coastal vegetation belts and deltaic outbuilding with consequent outpouring of land-plant detritus and terrigenous elastics into the deep basins probably led to formation of the "black shale" facies.
Resumo:
Drilling at Site 534 in the Blake-Bahama Basin recovered 268 m of Lower Cretaceous, Berriasian to Hauterivian, pelagic carbonates, together with volumetrically minor intercalations of claystone, black shales, and terrigenous and calcareous elastics. Radiolarian nannofossil pelagic carbonates accumulated in water depths of about 3300 to 3650 m, below the ACD (aragonite compensation depth) but close to the CCD (calcite compensation depth). Radiolarian abundance points to a relatively fertile ocean. In the Hauterivian and Barremian, during times of warm, humid climate and rising sea level, turbiditic influxes of both terrigenous and calcareous sediments, and minor debris flows were derived from the adjacent Blake Plateau. The claystones and black shales accumulated on the continental rise, then were redeposited onto the abyssal plain by turbidity currents. Dark organic-rich and pale organic-poor couplets are attributed to climatic variations on land, which controlled the input of terrigenous organic matter. Highly persistent, fine, parallel lamination in the pelagic chalks is explained by repeated algal "blooms." During early diagenesis, organic-poor carbonates remained oxygenated and were cemented early, whereas organic-rich intervals, devoid of burrowing organisms, continued to compact later in diagenesis. Interstitial dissolved-oxygen levels fluctuated repeatedly, but bottom waters were never static nor anoxic. The central western Atlantic in the Lower Cretaceous was thus a relatively fertile and wellmixed ocean basin.
Resumo:
Quantitative radiolarian assemblage analysis has been conducted on middle and upper Eocene sediments (Zones RP16 to RP18) from Ocean Drilling Program Site 1052 in order to establish the radiolarian magnetobiochronology and determine the nature of the faunal turnover across the middle/late Eocene boundary in the western North Atlantic Ocean. We recognize and calibrate forty-five radiolarian bioevents to the magneto- and cyclo-stratigraphy from Site 1052 to enhance the biochronologic resolution for the middle and late Eocene. Our data is compared to sites in the equatorial Pacific (Leg 199) to access the diachrony of biostratigraphic events. Eleven bioevents are good biostratigraphic markers for tropical/subtropical locations (south of 30°N). The primary markers (lowest occurrences of Cryptocarpium azyx and Calocyclas bandyca) which are tropical zonal boundary markers for Zones RP17 and RP18 provide robust biohorizons for correlation and age determination from the low to middle latitudes and between the Atlantic and Pacific Oceans. Some other radiolarian bioevents are highly diachronous (<1 million years) between oceanic basins. A significant faunal turnover of radiolarians is recognized within Chron C17n.3n (37.7 Ma) where 13 radiolarian species disappear rapidly in less than 100 kyr and 4 new species originate. The radiolarian faunal turnover coincides with a major extinction in planktonic foraminifera. We name the turnover phase, the Middle/Late Eocene Turnover (MLET). Assemblage analysis reveals the MLET to be associated with a decrease in low-mid latitude taxa and increase in cosmopolitan taxa and radiolarian accumulation rates. The MLET might be related to increased biological productivity rather than to surface-water cooling.
Resumo:
Bulk X-ray mineralogy of 47 hemipelagic mud and clay samples from the Blake Outer Ridge has revealed that the sediments contain low magnesian calcite, calcian dolomite, ferroan dolomite, and magnesian siderite. Dolomite and siderite are authigenic and occur as rhombohedrons scattered through the sediments, whereas calcite is mostly biogenic. Pliocene dolomitic lenses are made up of interlocking polyhedral grains of ferroan dolomite. The contents of authigenic dolomite and siderite are 3 to 8% in carbonate sediments and 70 to 89% in dolomitic lenses. Dolomite occurs largely in the cores above 192 m sub-bottom depth, whereas siderite occurs in the cores below 87 m. The distribution and occurrence of dolomite and siderite have determined the diagenetic zonation of carbonates as Zone I (dolomitic zone, top-90 m), Zone II (transition zone, 90-180 m), and Zone III (sideritic zone, 180 m-bottom). Measurements of major and minor elements in the untreated total sediment samples and the insoluble residues after digestion in acid-reducing solution have revealed that the soluble fraction concentrates carbonates and ferromanganese associations (Ca, Mg, Sr, Fe, and Mn). Typical "hydrogenous elements" (Co, Cu, Ni, and V) are more concentrated in the insoluble residues rather than in the soluble fraction; the concentrations of these four elements are low and comparable to modern offshore mud, probably because the Site 533 sediments were deposited at a high rate of sedimentation. The contents of Fe2O3 and MnO are somewhat high for rapidly accumulated mud, particularly in the Pliocene sediments (8.09 and 0.26%, respectively, on a Carbonate-free basis). The high Fe and Mn contents are mainly due to the high contribution of the leacheable nonlithogenous fraction; leacheable Fe and Mn originate in the ferromanganese oxide accumulated on the seafloor. Only a small amount of ferric oxide was converted to iron sulfide in the surficial part of Zone I. Most ferromanganese oxide was reduced and precipitated as ferroan dolomite and magnesian siderite in Zones II and III under high alkalinity and high pH conditions in the organic-matter-rich sediments. Fe2+ and Mn2+ in the deeper sediments beneath Zone III possibly migrated upward and concentrated as siderite in Zone III, hence resulting in high contents of Fe and Mn in the Pliocene sediments. Analysis of carbonate zonation on the Blake Outer Ridge has revealed that the zonation is subparallel to the bedding plane rather than to the present seafloor. The sediments at Site 103 on the flank region of the Ridge are lacking Zone I and most of Zone II, probably the result of erosion of the most of the Pleistocene and Pliocene sediments by the enhanced bottom currents during the Pleistocene.
Resumo:
In this Initial Report of the Deep Sea Drilling Project, detailed studies of Sites 533 (gas hydrates) on the Blake Outer Ridge and 534 (oldest ocean history) in the Blake-Bahama Basin have provided answers to many geological and geophysical questions posed over the decade that deep drilling has been undertaken in this part of the western North Atlantic. The history of drilling and a historical review of key scientific accomplishments have been presented in the Introduction (Gradstein and Sheridan, this volume). In this final chapter we review highlights of new geological, geophysical and paleoceanographic interpretations presented in this volume, and offer a critical review of this information. We conclude with a listing of some outstanding problems and recommendations for future research, including data collection.
Resumo:
Pyrolysis assay, bitumen analysis, and elemental analysis of kerogen were used to characterize the organic matter of selected core samples from Hole 534A (Leg 76) and Hole 391C (Leg 44) on the Blake-Bahama Plateau. The organic matter throughout the stratigraphic section appears to be principally of a terrestrial origin. The data from several isolated horizons in the Hatteras and Blake-Bahama Formations imply the presence of significant quantities of autochthonous marine organic matter. However, these horizons appear so limited that they cannot be considered potential liquid hydrocarbon source rocks. All the analyzed samples are immature and have not evolved sufficiently to enter into the main stage of hydrocarbon generation. The temporal and spatial restrictions of strata rich in marine organic matter suggest that they do not represent major expansions and contractions of anoxic bottom-water masses, but represent limited occurrences of anoxic conditions.