992 resultados para Sirera, Rodolf, 1948-


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na aplicação do X2-teste devemos distinguir dois casos : Á) Quando as classes de variáveis são caracterizadas por freqüências esperadas entre p = 0,1 e p = 0,9, podemos aplicar o X2-teste praticamente sem restrição. É talvez aconselhável, mas não absolutamente necessário limitar o teste aos casos nos quais a freqüência esperada é pelo menos igual a 5. e porisso incluimos na Táboa II os limites da variação de dois binômios ( 1/2 + 1/2)n ( 1/4 + 3/4)n para valo r es pequenos de N e nos três limites convencionais de precisão : ,5%, 1% e 0,1%. Neste caso, os valores dos X2 Índividuais têm apenas valor limitado e devemos sempre tomar em consideração principalmente o X2 total. O valor para cada X2 individual pode ser calculado porqualquer das expressôe seguintes: x2 = (f obs - f esp)²> f. esp = ( f obs - pn)2 pn = ( f obs% - p)2.N p% (100 - p%) O delta-teste dá o mesmo resultado estatístico como o X2-teste com duas classes, sendo o valor do X2-total algébricamente igual ao quadrado do valor de delta. Assim pode ser mais fácil às vezes calcular o X2 total como quadrado do desvio relativo da. variação alternativa : x² = ( f obs -pn)² p. (1-p)N = ( f obs - p %)2.N p% (100 - p%) B) Quando há classes com freqüência esperada menor do que p = 0,1, podemos analisar os seus valores individuais de X2, e desprezar o valor X2 para as classes com p maior do que 0,9. O X2-teste, todavia, pode agora ser aplicado apenas, quando a freqüência esperada for pelo menos igual ou maior do que 5 ou melhor ainda, igual ou maior do que 10. Quando a freqüência esperada for menor do que 5, a variação das freqüências observadas segue uma distribuição de Poisson, não sendo possível a sua substituição pela aproximação Gausseana. A táboa I dá os limites da variação da série de Poisson para freqüências esperadas (em números) desde 0,001 até 15. A vantagem do emprego da nova táboa I para a comparação, classe por classe, entre distribuições esperadas e observadas é explicada num exemplo concreto. Por meio desta táboa obtemos informações muito mais detablhadas do que pelo X2-teste devido ao fato que neste último temos que reunir as classes nas extremidades das distribuições até que a freqüência esperada atinja pelo menos o valor 5. Incluimos como complemento uma táboa dos limites X2, pára 1 até 30 graus de liberdade, tirada de um outro trabalho recente (BRIEGER, 1946). Para valores maiores de graus da liberdade, podemos calcular os limites por dois processos: Podemos usar uma solução dada por Fischer: √ 2 X² -√ 2 nf = delta Devem ser aplicados os limites unilaterais da distribuição de Gauss : 5%:1, 64; 1%:2,32; 0,1%:3,09: Uma outra solução podemos obter segundo BRIEGER (1946) calculando o valor: √ x² / nf = teta X nf = teta e procurando os limites nas táboas para limites unilaterais de distribuições de Fischer, com nl = nf(X2); n2 = inf; (BRIEGER, 1946).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1) O equilíbrio em populações, inicialmente compostas de vários genotipos depende essencialmente de três fatores: a modalidade de reprodução e a relativa viabilidade e fertilidade dos genotipos, e as freqüências iniciais. 2) Temos que distinguir a) reprodução por cruzamento livre quando qualquer indivíduo da população pode ser cruzado com qualquer outro; b) reprodução por autofecundação, quando cada indivíduo é reproduzido por uma autofecundação; c) finalmente a reprodução mista, isto é, os casos intermediários onde os indivíduos são em parte cruzados, em parte autofecundados. 3) Populações heterozigotas para um par de gens e sem seleção. Em populações com reprodução cruzada se estabelece na primeira geração um equilíbrio entre os três genotipos, segundo a chamada regra de Hardy- Weinberg. Inicial : AA/u + Aa/v aa/u = 1 Equilibirio (u + v/2)² + u + v/2 ( w + v/2) + (w + v/2)² = p2 + 2 p o. q o. + q²o = 1 Em populações com autofecundação o equilíbrio será atingido quando estiverem presentes apenas os dois homozigotos, e uma fórmula é dada que permite calcular quantas gerações são necessárias para atingir aproximadamente este resultado. Finalmente, em populações com reprodução mista, obtemos um equilíbrio com valores intermediários, conforme Quadro 1. Frequência Genotipo Inicial mº Geração Final AA u u + 2m-1v / 2m+1 u + 1/2v Aa v 2/ 2m+2 v - aa w w + 2m - 1/ 2m + 1 v w + 1/2 v 4) Os índices de sobrevivencia. Para poder chegar a fórmulas matemáticas simples, é necessário introduzir índices de sobrevivência para medir a viabilidade e fertilidade dos homozigotos, em relação à sobrevivência dos heterozigotos. Designamos a sobrevivência absoluta de cada um dos três genotipos com x, y e z, e teremos então: x [ A A] : y [ Aa] : z [ aa] = x/y [ A A] : [ Aa] : z/ y [aa] = R A [ AA] : 1 [Aa] : Ra [aa] É evidente que os índices R poderão ter qualquer valor desde zero, quando haverá uma eliminação completa dos homozigotos, até infinito quando os heterozigotos serão completamente eliminados. Os termos (1 -K) de Haldane e (1 -S) ou W de Wright não têm esta propriedade matemática, podendo variar apenas entre zero e um. É ainda necessário distinguir índices parciais, de acordo com a marcha da eliminação nas diferentes fases da ontogenia dos indivíduos. Teremos que distinguir em primeiro lugar entre a eliminação durante a fase vegetativa e a eliminação na fase reprodutiva. Estas duas componentes são ligadas pela relação matemática. R - RV . RR 5) Populações com reprodução cruzada e eliminação. - Considerações gerais. a) O equilibrio final, independente da freqüência inicial dos genes e dos genotipos para valores da sobrevivência diferentes de um, é atingido quando os gens e os genotipos estão presentes nas proporções seguintes: (Quadro 2). po / qo = 1- ro / 1-Ra [AA] (1 - Ro)² . Rav [ Aa] = 2(1 - Ra) ( 1 - Ra) [a a} = ( 1 - Ra)² . RaA b) Fórmulas foram dadas que permitem calcular as freqüências dos genotipos em qualquer geração das populações. Não foi tentado obter fórmulas gerais, por processos de integração, pois trata-se de um processo descontínuo, com saltos de uma e outra geração, e de duração curta. 6) Populações com reprodução cruzada e eliminação. Podemos distinguir os seguintes casos: a) Heterosis - (Quadro 3 e Fig. 1). Ra < 1; Ra < 1 Inicial : Final : p (A)/q(a) -> 1-ra/1-ra = positivo/zero = infinito Os dois gens e assim os três genotipos zigóticos permanecem na população. Quando as freqüências iniciais forem maiores do que as do equilíbrio elas serão diminuidas, e quando forem menores, serão aumentadas. b) Gens recessivos letais ou semiletais. (Quadro 1 e Fig. 2). O equilíbrio será atingido quando o gen, que causa a redução da viabilidade dos homozigotos, fôr eliminado da população. . / c) Gens parcialmente dominantes semiletais. (Quadro 5 e Fig. 3). Rª ; Oz Ra < 1 Inicial : Equilibrio biológico Equilíbrio Matemático pa(A)/q(a) -> positivo /zero -> 1- Rq/ 1-Ra = positivo/negativo d) Genes incompatíveis. Ra > 1 ; Ra > 1; Ra > Ra Equílibrio/biológico p (A)/ q(a) -> positivo/zero Equilibrio matemático -> positivo/ zero -> zero/negativo -> 1-Ra/1 - Ra = negativo/negativo Nestes dois casos devemos distinguir entre o significado matemático e biológico. A marcha da eliminação não pode chegar até o equilíbrio matemático quando um dos gens alcança antes a freqüência zero, isto é, desaparece. Nos três casos teremos sempre uma eliminação relativamente rápida de um dos gens «e com isso do homozigoto respectivo e dos heterozigotòs. e) Foram discutidos mais dois casos especiais: eliminação reprodutiva diferencial dos dois valores do sexo feminino e masculino, -e gens para competição gametofítica. (Quadros 6 e 7 e Figs. 4 a 6). 7) População com autofecundação e seleção. O equilíbrio será atingido quando os genotipos estiverem presentes nas seguintes proporções: (Quadro 8); [AA] ( 0,5 - Ra). R AV [Aa] = 4. ( 0,5 - Ra) . (0.5 -R A) [aa] ( 0,5 - R A) . Rav Também foram dadas fórmulas que permitem calcular as proporções genotípicas em cada geração e a marcha geral da eliminação dos genotipos. 8)Casos especiais. Podemos notar que o termo (0,5 -R) nas fórmulas para as populações autofecundadas ocupa mais ou menos a mesma importância do que o termo (1-R) nas fórmulas para as populações cruzadas. a) Heterosis. (Quadro 9 e Fig. 7). Quando RA e Ra têm valores entre 0 e 0,5, obtemos o seguinte resultado: No equilíbrio ambos os gens estão presentes e os três heterozigotos são mais freqüentes do que os homozigotos. b) Em todos os demais casos, quando RA e Ra forem iguais ou maiores do que 0,5, o equilíbrio é atingido quando estão representados na população apenas os homozigotos mais viáveis e férteis. (Quadro 10). 9) Foram discutidos os efeitos de alterações dos valores da sobrevivência (Fig. 9), do modo de reprodução (Fig. 10) e das freqüências iniciais dos gens (Fig. 8). 10) Algumas aplicações à genética aplicada. Depois de uma discussão mais geral, dois problemas principais foram tratados: a) A homogeneização: Ficou demonstrado que a reprodução por cruzamento livre representa um mecanismo muito ineficiente, e que se deve empregar sempre ou a autofecundação ou pelo menos uma reprodução mista com a maior freqüência possível de acasalamentos consanguíneos. Fórmulas e dados (Quadro 11 e 12), permitem a determinação do número de gerações necessárias para obter um grau razoável de homozigotia- b) Heterosis. Existem dois processos, para a obtenção de um alto grau de heterozigotia e com isso de heterosis: a) O método clássico do "inbreeding and outbreeding". b) O método novo das populações balançadas, baseado na combinação de gens que quando homozigotos dão urna menor sobrevivência do que quando heterozigotos. 11) Algumas considerações sobre a teoria de evolução: a) Heterosis. Os gens com efeito "heterótico", isto é, nos casos onde os heterozigotos s mais viáveis e férteis, do que os homozigotos, oferecem um mecanismo especial de evolução, pois nestes casos a freqüência dos gens, apesar de seu efeito negativo na fase homozigota, tem a sua freqüência aumentada até que seja atingido o valor do equilíbrio. b) Gens letais e semiletais recessivos. Foi demonstrado que estes gens devem ser eliminados automáticamente das populações. Porém, ao contrário do esperado, não s raros por exemplo em milho e em Drosophila, gens que até hoje foram classificados nesta categoria. Assim, um estudo detalhado torna-se necessário para resolver se os heterozigotos em muitos destes casos não serão de maior sobrevivência do que ambos os homozigotos, isto é, que se trata realmente de genes heteróticos. c) Gens semiletais parcialmente dominantes. Estes gens serão sempre eliminados nas populações, e de fato eles são encontrados apenas raramente. d) Gens incompatíveis. São também geralmente eliminados das populações. Apenas em casos especiais eles podem ter importância na evolução, representando um mecanismo de isolamento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper the behaviour of the chromosomes in the spermatogenesis of the Myriapod Rhinocricus Padbergi Verhoeff, 1938 is studied. The primary spermatocytes are provided with 10 independent bivalents which separate normally giving rise to equivalent secondary spermatocytes. No indication of sex chromosomes has been found. Fusion of two bivalents or of four, two by two, has been observed, giving origin to secondary spermatocytes with 9 and 8 chromosomes respectively, in which fused chromosomes could be discovered. For analysing the facts the chomosomes of both, primary and secondary metaphases were separately counted from a total of 190 celis of four individuals and statistically treted. The X2-test gave insignificant results. Twenty chomosomes were counted in somatic tissues. The heterochròmatic parts of the leptotene threads were usually arranged in the periphery of the nucleus. In resting nuclei chromocenters can be observed in varyng number. Their chromosomal nature is revealed by the fact that when treated by KCÑ or KNOS they begin uncoiling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1° - Cita-sé a evolução das abelhas segundo MICÍÍENÉR" (1944). 2.° - A evolução dos Melíponíneos é estudada sob o ponto de vista da sua biologia, estabelecendo-se o tipo do meliponíneo primitivo. 3.° - São feitas considerações sobre a distribuição geográfica dos meliponíneos, entrando-se em detalhes sobre os seus fosseis, sobre a influência dos deslocamentos geológicos do cenozoico sobre sua distribuição, com particular referência ao seu estabelecimento na América do Sul. Considera-se também o e$eito das glaciações e a descontinuidade por ela provocada na distribuição dos meliponíneos. 4.° - São feitas hipóteses sobre a época em que se formaram as Meliponas, sobre o processo de determinação das castas e sua influência na evolução das mesmas. O tipo M. marginata é considerado o mais primitivo dos existentes atualmente. É dada uma hipótese, baseada na biologia e genética das Meliponas, para explicar sua evolução a partir de uma Trígona primitiva. 5.° - Sugere-se que a M. fascisrfta (excluidas a M. punc-ticollis e M. concinnula, que necessitam de estudos) seja do tipo da Meliponatrifatorial primitiva, tomando-se por base a sua proximidade a M. marginata, sua distribuição e sua variação. 6.° - Sugere-se como centro de origem das Meliponas a Bacia Amazônica, por ser esse lugar a zona onde há maior variação e por ser o centro geográfico da área habitada pelas Meliponas.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical analyses of an experiment on wheat were carried out with the aid of Mitscherlich's law. The experiment was made in Ponta Grossa, Paraná, by the Ministry of Agriculture of Brasil. Lime, in the form of Ca(OH)2, was applied at the levels of 0, 2, 4, 6 and 8 metric tons per hectare. A 5 x 5 Latin square was used. Lime was applied in 1940 and wheat was cultivated in the same plots for several years. The following fertilizers were annually used for all plots: NaNO3 100 kilograms per hectare, Superphosphate 350 kilograms per hectare, K2S04 80 kilograms per hectare. The statistical analysis of the data collected in 1941, 1942, 1943, 1947 and 1948, carried out in accordance with the methods previously introduced by Pimentel Gomes and Malavolta (1949 a, 1949 b) and Pimentel Gomes (1950), proved: I. That Mitscherlich's law could be correctly applied to the data. II. That there was a statistically significant effect of lime on wheat yield. III. That the optimum amount of lime to be applied to the soil lies between 5 and 15 hundred kilograms of Ca(OH)2 per hectare. IV. That there is a migration of calcium from some plots to others, in such a way that the data obtained in 1947 and 1948 are not representative of the amounts of lime applied in 1940. V. That the analysis of variance can be used, as the Bartlett test shows that the variances at the distinct levele of lime application are not statistically different. It must be noted that, with improved variety and fertilization, the yield was rised to about 2500 kilograms per hectare in 1947, and 1600 in 1948, being only of about 100 kilograms per hectare in 1940.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with problems on population genetics in Hymenoptera and particularly in social Apidae. 1) The studies on populations of Hymenoptera were made according to the two basic types of reproduction: endogamy and panmixia. The populations of social Apinae have a mixed method of reproduction with higher percentage of panmixia and a lower of endogamy. This is shown by the following a) males can enter any hive in swarming time; b) males of Meliponini are expelled from hives which does not need them, and thus, are forced to look for some other place; c) Meliponini males were seen powdering themselves with pollen, thus becoming more acceptable in any other hive. The panmixia is not complete owing to the fact that the density of the breeding population as very low, even in the more frequent species as low as about 2 females and 160 males per reproductive area. We adopted as selection values (or survival indices) the expressions according to Brieger (1948,1950) which may be summarised as follows; a population: p2AA + ²pq Aa + q2aa became after selection: x p2AA + 2pq Aa + z q²aa. For alge-braics facilities Brieger divided the three selective values by y giving thus: x/y p2 AA + y/y 2 pq Aa + z/y q²aa. He called x/y of RA and z/y of Ra, that are survival or selective index, calculated in relation to the heterozygote. In our case all index were calculated in relation to the heterozygote, including the ones for haploid males; thus we have: RA surveval index of genotype AA Ra surveval index of genotype aa R'A surveval index of genotype A R'a surveval index of genotype a 1 surveval index of genotype Aa The index R'A ande R'a were equalized to RA and Ra, respectively, for facilities in the conclusions. 2) Panmitic populations of Hymenoptera, barring mutations, migrations and selection, should follow the Hardy-Weinberg law, thus all gens will be present in the population in the inicial frequency (see Graphifc 1). 3) Heterotic genes: If mutation for heterotic gene ( 1 > RA > Ra) occurs, an equilibrium will be reached in a population when: P = R A + Ra - 2R²a _____________ (9) 2(R A + Ra - R²A - R²a q = R A + Ra - 2R²A _____________ (10) 2(R A + Ra - R²A - R²a A heterotic gene in an hymenopteran population may be maintained without the aid of new mutation only if the survival index of the most viable mutant (RA) does not exced the limiting value given by the formula: R A = 1 + √1+Ra _________ 4 If RA has a value higher thah the one permitted by the formula, then only the more viable gene will remain present in the population (see Graphic 10). The only direct proof for heterotic genes in Hymenoptera was given by Mackensen and Roberts, who obtained offspring from Apis mellefera L. queens fertilized by their own sons. Such inbreeding resulted in a rapid loss of vigor the colony; inbred lines intercrossed gave a high hybrid vigor. Other fats correlated with the "heterosis" problem are; a) In a colony M. quadrifasciata Lep., which suffered severely from heat, the percentage of deths omong males was greater .than among females; b) Casteel and Phillips had shown that in their samples (Apis melifera L). the males had 7 times more abnormalities tian the workers (see Quadros IV to VIII); c) just after emerging the males have great variation, but the older ones show a variation equal to that of workers; d) The tongue lenght of males of Apis mellifera L., of Bombus rubicundus Smith (Quadro X), of Melipona marginata Lep. (Quadro XI), and of Melipona quadrifasciata Lep. Quadro IX, show greater variationthan that of workers of the respective species. If such variation were only caused by subviables genes a rapid increasse of homozigoty for the most viable alleles should be expected; then, these .wild populations, supposed to be in equilibrium, could .not show such variability among males. Thus we conclude that heterotic genes have a grat importance in these cases. 4) By means of mathematical models, we came to the conclusion tht isolating genes (Ra ^ Ra > 1), even in the case of mutations with more adaptability, have only the opor-tunity of survival when the population number is very low (thus the frequency of the gene in the breeding population will be large just after its appearence). A pair of such alleles can only remain present in a population when in border regions of two races or subspecies. For more details see Graphics 5 to 8. 5) Sex-limited genes affecting only females, are of great importance toHymenoptera, being subject to the same limits and formulas as diploid panmitic populations (see formulas 12 and 13). The following examples of these genes were given: a) caste-determining genes in the genus Melipona; b) genes permiting an easy response of females to differences in feeding in almost all social Hymenoptera; c) two genes, found in wild populations, one in Trigona (Plebéia) mosquito F. SMITH (quadro XII) and other in Melipona marginata marginata LEP. (Quadro XIII, colonies 76 and 56) showing sex-limited effects. Sex-limited genes affecting only males do not contribute to the plasticity or genie reserve in hymenopteran populations (see formula 14). 6) The factor time (life span) in Hymenoptera has a particular importance for heterotic genes. Supposing one year to be the time unit and a pair of heterotic genes with respective survival indice equal to RA = 0, 90 and Ra = 0,70 to be present; then if the life time of a population is either one or two years, only the more viable gene will remain present (see formula 11). If the species has a life time of three years, then both alleles will be maintained. Thus we conclude that in specis with long lif-time, the heterotic genes have more importance, and should be found more easily. 7) The colonies of social Hymenoptera behave as units in competition, thus in the studies of populations one must determine the survival index, of these units which may be subdivided in indice for egg-laying, for adaptive value of the queen, for working capacity of workers, etc. 8) A study of endogamic hymenopteran populations, reproduced by sister x brother mating (fig. 2), lead us to the following conclusions: a) without selection, a population, heterozygous for one pair of alleles, will consist after some generations (theoretically after an infinite number of generation) of females AA fecundated with males A and females aa fecundated with males a (see Quadro I). b) Even in endogamic population there is the theoretical possibility of the presence of heterotic genes, at equilibrium without the aid of new mutations (see Graphics 11 and 12), but the following! conditions must be satisfied: I - surveval index of both homozygotes (RA e Ra) should be below 0,75 (see Graphic 13); II - The most viable allele must riot exced the less viable one by more than is permited by the following formula (Pimentel Gomes 1950) (see Gra-fic 14) : 4 R5A + 8 Ra R4A - 4 Ra R³A (Ra - 1) R²A - - R²a (4 R²a + 4 Ra - 1) R A + 2 R³a < o Considering these two conditions, the existance of heterotic genes in endogamic populations of Hymenoptera \>ecames very improbable though not - impossible. 9) Genie mutation offects more hymenopteran than diploid populations. Thus we have for lethal genes in diploid populations: u = q2, and in Hymenoptera: u = s, being u the mutation ratio and s the frequency of the mutant in the male population. 10) Three factors, important to competition among species of Meliponini were analysed: flying capacity of workers, food gathering capacity of workers, egg-laying of the queen. In this connection we refer to the variability of the tongue lenght observed in colonies from several localites, to the method of transporting the pollen in the stomach, from some pots (Melliponi-ni storage alveolus) to others (e. g. in cases of pillage), and to the observation that the species with the most populous hives are almost always the most frequent ones also. 11) Several defensive ways used for Meliponini to avoid predation are cited, but special references are made upon the camouflage of both hive (fig. 5) and hive entrance (fig. 4) and on the mimetism (see list in page ). Also under the same heading we described the method of Lestrimelitta for pillage. 12) As mechanisms important for promoting genetic plasticity of hymenopteran species we cited: a) cytological variations and b) genie reserve. As to the former, duplications and numerical variations of chromosomes were studied. Diprion simile ATC was cited as example for polyploidy. Apis mellife-ra L. (n •= 16) also sugests polyploid origen since: a) The genus Melipona, which belongs to a" related tribe, presents in all species so far studied n = 9 chromosomes and b) there occurs formation of dyads in the firt spermatocyte division. It is su-gested that the origin of the sex-chromosome of Apis mellifera It. may be related to the possible origin of diplo-tetraploidy in this species. With regards to the genie reserve, several possible types of mutants were discussed. They were classified according to their survival indices; the heterotic and neutral mutants must be considered as more important for the genie reserve. 13) The mean radius from a mother to a daghter colony was estimated as 100 meters. Since the Meliponini hives swarm only once a year we may take 100 meters a year as the average dispersion of female Meliponini in ocordance to data obtained from Trigona (tetragonisca) jaty F. SMITH and Melipona marginata LEP., while other species may give different values. For males the flying distance was roughly estimated to be 10 times that for females. A review of the bibliography on Meliponini swarm was made (pg. 43 to 47) and new facts added. The population desity (breeding population) corresponds in may species of Meliponini to one male and one female per 10.000 square meters. Apparently the males are more frequent than the females, because there are sometimes many thousands, of males in a swarm; but for the genie frequency the individuals which have descendants are the ones computed. In the case of Apini and Meliponini, only one queen per hive and the males represented by. the spermatozoos in its spermateca are computed. In Meliponini only one male mate with the queen, while queens of Apis mellijera L. are fecundated by an average of about 1, 5 males. (Roberts, 1944). From the date cited, one clearly sees that, on the whole, populations of wild social bees (Meliponini) are so small that the Sewall Wright effect may become of great importance. In fact applying the Wright's formula: f = ( 1/aN♂ + 1/aN♀) (1 - 1/aN♂ + 1/aN♀) which measures the fixation and loss of genes per generation, we see that the fixation or loss of genes is of about 7% in the more frequent species, and rarer species about 11%. The variation in size, tergite color, background color, etc, of Melipona marginata Lep. is atributed to this genetic drift. A detail, important to the survival of Meliponini species, is the Constance of their breeding population. This Constance is due to the social organization, i. e., to the care given to the reproductive individuals (the queen with its sperm pack), to the way of swarming, to the food storage intended to control variations of feeding supply, etc. 14) Some species of the Meliponini are adapted to various ecological conditions and inhabit large geographical areas (e. g. T. (Tetragonisca jaty F. SMITH), and Trigona (Nanno-trigona testaceicornis LEP.) while others are limited to narrow regions with special ecological conditions (e. g. M. fuscata me-lanoventer SCHWARZ). Other species still, within the same geographical region, profit different ecological conditions, as do M. marginata LEP. and M. quadrifasciata LEP. The geographical distribution of Melipona quadrifasciata LEP. is different according to the subspecies: a) subsp anthidio-des LEP. (represented in Fig. 7 by black squares) inhabits a region fron the North of the S. Paulo State to Northeastern Brazil, ,b) subspecies quadrifasciata LEP., (marked in Fig. 7 with black triangles) accurs from the South of S. Paulo State to the middle of the State of Rio Grande do Sul (South Brazil). In the margined region between these two areas of distribution, hi-brid colonies were found (Fig. 7, white circles); they are shown with more details in fig. 8, while the zone of hybridization is roughly indicated in fig. 9 (gray zone). The subspecies quadrifasciata LEP., has 4 complete yellow bands on the abdominal tergites while anthidioides LEP. has interrupted ones. This character is determined by one or two genes and gives different adaptative properties to the subspecies. Figs. 10 shows certains meteorological isoclines which have aproximately the same configuration as the limits of the hybrid zone, suggesting different climatic adaptabilities for both genotypes. The exis-tance of a border zone between the areas of both subspecies, where were found a high frequency of hybrids, is explained as follows: being each subspecies adapted to a special climatic zone, we may suppose a poor adaptation of either one in the border region, which is also a region of intermediate climatic conditions. Thus, the hybrids, having a combination of the parent qualities, will be best adapted to the transition zone. Thus, the hybrids will become heterotic and an equilibrium will be reached with all genotypes present in the population in the border region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 - This paper is a joined publication of the Dept. of Genetics, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, and Secção de Citricultura e Frutas Tropicais, Instituto Agronômico, de Campinas, and deal with the number of seed per fruit and the polyembryony in Citrus, with special reference to the pummelos (C. grandis). 2 - For C. pectinifera, hibrid limon x acid lime, C. histrix and Citrus sp. the mean of seeds per fruit is 5,8 - 17,3 - 30,2 -94,6; for 14 pummelos the average was 100 and the range of variation 11 to 185 seeds per fruit. For the four above mentioned Citrus the cotyledons were classified into 3 types: big (near 8 mm.), medium (near 6 mm) and small (near 4 mm) and for the pummelos there was only one size of cotyledons, about 10 mm (table 1). 3 - The polyembryony was determined by two processes: a) counting of the embryos in the mature seed; b) counting after germination in flats or seed-beds. The rasults obtained are in table 2; the process a gave larger results than process b.The following pummelos are monoembryonics: melancia, inerme, Kaune Paune, sunshine, vermelha, Singapura, periforme, Zamboa, doce, Indochina, Lau-Tau, Shantenyau and Siamesa. Sometime it was found a branching of the main stem that gave a impression of polyembryonic seeds. 4 - It was shown by the x2 test that the distribution of embryo numbers fits the Poisson's series (table 2) in both processes. 5 - It is discussed in table 2 the variability of polyembryony for the following cases: a) between plants, within years. The teste for the differences of mean of polyembryony between 3 plants of C. pectinifera is statistically significant in 1948 and 1949; b) between yields of the same plant, within year. The same case of C. pectinifera may be used for this purpose; c) between process, within year. It is shown in table 3, for C. pectinifera and the hibrid "limon x acid lime" that there is a statistically signicicant between both process above mentioned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In several cotton crops areas of the State of S. Paulo it was observed, during the years of 1948, 1949, and 1951, the appearance of a purple color of the leaves; the color appears in the opening of the bolls and was correlated with a decrease of production. The opinions concerning the cause of such abnormality were very different and sometimes contradictory; certain investigators attributed the disease to insect attack, others to bad climatic conditions whereas others to a potassium deficiency now called "fome de potássio" (potash hunger); our ideas on the subject is another one. We think that the disease is caused by lack of a suitable supply of magnesium. This opinion is largely based on the syntomatology found in the literature. To study the problem, several experiments were carried out, namely: 1. pot experiments using soil collected in areas where the disorder had appeared; 2. pot experiments controlling the water supply; 3. sand culture experiments omitting either potassium or magnesium; 4. leaf analysis of plant matrial collected troughout the Piracicaba County; 5. plot experiments with the varieties Texas, Express, and I.A. 817 Campinas. The first four experiments were discussed elsewhere. To study the point 5 an experiment was carried out, with the following treatments : 1 - NPKCaMg (no K added) - Mg supplied as MgSO4 (a soluble form); 2 -NPKCa (no Mg added); 3 -NPKCaMg (complete) - Mg supplied as MgSO4; 4 - NPKCaMg (complete) - Mg supplied as dolomitic limestone (a slightly soluble form) as a rate 2.5 higher than in the treatment 1 and 3. Organic matter as cottonseed meal was applied in the proportion of 500 kg per hectare. The experimental design was randomized blocks with 4 replications and the results can be summarized as follows: 1 the I.A 817 variety was the most strongly affected by the physiological disorder, with severe decrease in yield; 2. the disease occurred more frequently in the minus magnesium treatment; 3. dolomitic limestone is so effective as magnesium sulfate in the control of the disease as well in the raising of the yield; 4. in the minus K treatment it was observed a marked occurrence of the typical symptoms of potassium deficiency (cotton rust); 5. magnesium was actually, in the experimental conditions the responsible for the purple color (vermelhão) of the cotton leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the years 1948, 1949 and 1951 a disease occurred in the cotton crops of the state of S. Paulo Brazil (S. Am.), which caused a severe drop in yields. The abnormality was characterized by a typical reddish - purple color of the leaves, being by this reason, called "vermelhão", that is, reddening of the cotton plant. The disease was associated with a dry season. Among the several hypotheses raised to explain the causes of the disease were: insect attack, potassium deficiency - where from the name "potash hunger" was also given -, and magnesium deficiency: In order to study the problem the Department of Agricultural Chemistry of the College of Agriculture of the University of São Paulo, at Piracicaba, carried out a series of experiments as follows: 1. pot experiments in which soil of one of the affected regions was used ("terra roxa", a red-brownish soil derived from basalt); 2. pot-soil experiments varying the moisture supplied; 3. sand culture experiments omitting certain elements from the nutrient solutions; 4. field plot experiments, conducted on a sandy soil; three different varieties were employed: Texas, Express, and I.A. 817; magnesium was applied either as sulfate or dolomitic limestone. All the experiments were completed with suitable chemical analyses. The results can be summarized as follows: 1. in the first trial, the not properly manured pots (minus Mg), symptoms were registered which were similar to the symptoms observed in the field; it was possible to establish some differences among three different types of reddening: due to lack of K in the mixed fertilizers used, the characteristic cotton rust made its appearance, the red color in the leaves of the minus Mg plants was all alike that described in the current literature as a symptom of Mg-deficiency; in all the treatments ocurred a yellow-reddish color in the leaves associated with the latest stages of maturity; 2. in the second experiment it was verified that when the plants in the pots with soil were kept 75 per cent of the water holding capacity, no symptom of deficiency showed up; was true even for the plants not receiving neither K nor Mg; however, plants supplied with only 25 per cent of the water holding capacity showed, respectively, cotton rust in the minus K treatment and the red purplish color in the minus Mg series; 3. the sand culture experiment confirmed lack of Mg as the cause of "vermelhão", being potash deficiency the responsible for cotton rust; 4. in the field experiment, variety LA. 817 revealed to be the most sensitive to "vermelhão" when Mg was omitted from the fertilizers; symptoms of K deficiency appeared when no K was supplied; both magnesium sulfate and dolomitic limestone proved to be equally effective in the control of "vermelhão"; 5. the analyses of material collected both in the field as well in the pots revealed that leaf petiole in the most reliable part to indicate the K and Mg status of the plant; the variation in Mg content suffered by the plants showing different stages of "vermelhão was, quantitatively, at least as large as that in K content, however when one deals with K deficient plants, that is, plants showing the typical rust, no variation occurred in the Mg content, whereas K in the dry mater dropped from more than 1 per cent to less than half per cent. Then, the following general conclusions can be drawn: 1. Mg deficiency is the cause of "vermelhão" of cotton crops; 2. K deficiency also occurred, but in a lesser degree; 3. the climate conditions - especially the lack of rain influenced the soil dynamic of K, and especially Mg, bringing a severe reduction in their assimilability; 4. the "vermelhão" disease can be easily controlled upon additions either of magnesium sulfate or dolomitic limestone.