975 resultados para Shallow water
Resumo:
Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system.
Resumo:
The Ría de Vigo is a bay strongly influenced by upwelling-downwelling cycles along the adjacent coast of NW Iberia. Moored and ship-board observations during September 2006 showed that subduction, initially associated with an estuarine circulation, strengthened when a strong downwelling circulation, resulting from northward wind over the coastal ocean, was generated in the outer ría causing ambient waters to be advected outward in the lower layer. Incoming surface waters confined the estuarine circulation to the shallow interior and displaced isopleths downward through the water column at ∼10 m d−1. As the estuarine circulation retreated inward, strong flow convergence developed between middle and inner ria in the layer above 15 m, while divergence developed beneath. The convergence increased through the period of downwelling-favorable wind at a rate consistent with the observed isopleth displacement velocities. The coefficient of turbulent diffusion Kt, from a microstructure profiler, indicated that mixing was strong in the estuarine circulation and subsequently in the downwelling zone, where localized instabilities and temperature-salinity inversions were observed. During the downwelling, concentrations of phytoplankton, including potentially harmful species, increased, especially in the middle and inner ria, as a result of inward advection, subduction and the ability of the dinoflagellates to maintain their position in the water column by swimming. In the course of the 5 day event, the water mass of all but the innermost ría was flushed completely and replaced by waters originating in the coastally-trapped poleward flow along the Atlantic coastline.
Resumo:
The Ría de Vigo is a bay strongly influenced by upwelling-downwelling cycles along the adjacent coast of NW Iberia. Moored and ship-board observations during September 2006 showed that subduction, initially associated with an estuarine circulation, strengthened when a strong downwelling circulation, resulting from northward wind over the coastal ocean, was generated in the outer ría causing ambient waters to be advected outward in the lower layer. Incoming surface waters confined the estuarine circulation to the shallow interior and displaced isopleths downward through the water column at ∼10 m d−1. As the estuarine circulation retreated inward, strong flow convergence developed between middle and inner ria in the layer above 15 m, while divergence developed beneath. The convergence increased through the period of downwelling-favorable wind at a rate consistent with the observed isopleth displacement velocities. The coefficient of turbulent diffusion Kt, from a microstructure profiler, indicated that mixing was strong in the estuarine circulation and subsequently in the downwelling zone, where localized instabilities and temperature-salinity inversions were observed. During the downwelling, concentrations of phytoplankton, including potentially harmful species, increased, especially in the middle and inner ria, as a result of inward advection, subduction and the ability of the dinoflagellates to maintain their position in the water column by swimming. In the course of the 5 day event, the water mass of all but the innermost ría was flushed completely and replaced by waters originating in the coastally-trapped poleward flow along the Atlantic coastline.
Resumo:
Seasonal and interannual changes (1993e2012) of water temperature and transparency, river discharge, salinity, water quality properties, chlorophyll a (chl-a) and the carbon biomass of the main taxonomical phytoplankton groups were evaluated at a shallow station (~2 m) in the subtropical Patos Lagoon Estuary (PLE), Brazil. Large variations in salinity (0e35), due to a complex balance between Patos Lagoon outflow and oceanic inflows, affected significantly other water quality variables and phytoplankton dynamics, masking seasonal and interannual variability. Therefore, salinity effect was filtered out by means of a Generalized Additive Model (GAM). River discharge and salinity had a significant negative relation, with river discharge being highest and salinity lowest during July to October. Diatoms comprised the dominant phytoplankton group, contributing substantially to the seasonal cycle of chl-a showing higher values in austral spring/summer (September to April) and lowest in autumn/winter (May to August). PLE is a nutrient-rich estuary and the phytoplankton seasonal cycle was largely driven by light availability, with few exceptions in winter. Most variables exhibited large interannual variability. When varying salinity effect was accounted for, chl-a concentration and diatom biomass showed less irregularity over time, and significant increasing trends emerged for dinoflagellates and cyanobacteria. Long-term changes in phytoplankton and water quality were strongly related to variations in salinity, largely driven by freshwater discharge influenced by climatic variability, most pronounced for ENSO events. However, the significant increasing trend of the N:P ratio indicates that important environmental changes related to anthropogenic effects are undergoing, in addition to the hydrology in the PLE.
Resumo:
Knowledge of how biota can be used to monitor ecosystem health and assess impacts by human alterations such as land use and management measures taken at different spatial scales is critical for improving the ecological quality of aquatic ecosystems. This knowledge in Uganda is very limited or unavailable yet it is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of aquatic ecosystems. In this study, benthic invertebrate community patterns were sampled between June 2001 and April 2002 and analysed in relation to water quality and catchment land use patterns from three shallow near-shore bays characterized by three major land uses patterns: urban (Murchison Bay); semi-urban (Fielding Bay); rural (Hannington Bay). Variations in density and guild composition of benthic macro-invertebrates communities were evaluated using GIS techniques along an urban-rural gradient of land use and differences in community composition were related to dissolved oxygen and conductivity variation. Based on numerical abundance and tolerance values, Hilsenhoff's Biotic Index ofthe invertebrates was determined in order to evaluate the relative importance of water quality in the three bays. Murchison Bay supported a relatively taxa-poor invertebrate assemblage mainly comprising stenotopic and eurytopic populations of pollution-tolerant groups such as worms and Chironomus sp. with an overall depression in species diversity. On the contrary, the communities in Fielding and Hannington bays were quite similar and supported distinct and diverse assemblages including pollution-intolerant forms such as Ephemeroptera (mayflies), Odonata (dragonflies). The Hilsenhoff Biotic Index in Murchison Bay was 6.53. (indicating poor water quality) compared to 6.34 for Fielding Bay and 5.78 for Hannington Bay (both indicating fair water quality). The characterization of maximum taxa richness balanced among taxa groups with good representation of intolerant individuals in Hannington Bay relative to Fielding and Murchison bays concludes that the bay is the cleanest in terms of water quality. Contrary, the dominance of few taxa with many tolerant iqdividuals present in Murchison Bay indicates that the bay is degraded in terms of water quality. These result are ofimportance when planning conservation and management measures, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g nutrient loading) affect water ecosystems. Therefore, analysis of water quality in relation to macro-invertebrate community composition patterns as bio-indicators can lead to further understanding of their responses to environmental manipulations and perturbations.
Resumo:
During the late Miocene, exchange between the Mediterranean Sea and Atlantic Ocean changed dramatically, culminating in the Messinian Salinity Crisis (MSC). Understanding Mediterranean-Atlantic exchange at that time could answer the enigmatic question of how so much salt built up within the Mediterranean, while furthering the development of a framework for future studies attempting to understand how changes may have impacted global thermohaline circulation. Due to their association with specific water masses at different scales, radiogenic Sr, Pb, and Nd isotope records were generated from various archives contained within marine deposits to endeavour to understand better late Miocene Mediterranean-Atlantic exchange. The archives used include foraminiferal calcite (Sr), fish teeth and bone (Nd), dispersed authigenic ferromanganese oxyhydroxides (Nd, Pb), and a ferromanganese crust (Pb). The primary focus is on sediments preserved at one end of the Betic corridor, a gateway that once connected the Mediterranean to the Atlantic through southern Spain, although other locations are investigated. The Betic gateway terminated within several marginal sub-basins before entering the Western Mediterranean; one of these is the Sorbas Basin, a well-studied location whose sediments have been astronomically tuned at high temporal resolution, providing the necessary age control for sub-precessional resolution records. Since the climatic history of the Mediterranean is strongly controlled by precessional changes in regional climate, the aim was to produce records at high (sub-precessional) temporal resolution, to be able to observe clearly any precessional cyclicity driven by regional climate which could be superimposed over longer trends. This goal was achieved for all records except the ferromanganese crust record. The 87Sr/86Sr isotope record (Ch. 3) shows precessional frequency excursions away from the global seawater curve. As precessional frequency oscillations are unexpected for this setting, a numerical box model was used to determine the mechanisms causing the excursions. To enable parameterisation of model variables, regional Sr characteristics, data from general circulation model HadCM3L, and new benthic foraminiferal assemblage data are employed. The model results imply that the Sorbas Basin likely had a positive hydrologic budget in the late Miocene, very different to that of today. Moreover, the model indicates that the mechanism controlling the Sr isotope ratio of Sorbas Basin seawater was not restriction, but a lack of density-driven exchange with the Mediterranean. Beyond improving our understanding of how marginal Mediterranean sub-basins may evolve different isotope signatures, these results have implications for astronomical tuning and stratigraphy in the region, findings which are crucial considering the geological and climatic history of the late Miocene Mediterranean is based entirely on marginal deposits. An improved estimate for the Nd isotope signature of late Miocene Mediterranean Outflow (MO) was determined by comparing Nd isotope signatures preserved in the deeper Alborán Sea at ODP Site 978 with literature data as well as the signature preserved in the Sorbas Basin (Ch. 4; -9.34 to -9.92 ± 0.37 εNd(t)). It was also inferred that it is unlikely that Nd isotopes can be used reliably to track changes in circulation within the shallow settings characteristic of the Mediterranean-Atlantic connections; this is significant in light of a recent publication documenting corridor closure using Nd isotopes. Both conclusions will prove useful for future studies attempting to understand changes in Mediterranean-Atlantic exchange. Excursions to high values, with precessional frequency, are also observed in the radiogenic Pb isotope record for the Sorbas Basin (Ch. 5). Widening the scope to include locations further away from the gateways, records were produced for late Miocene sections on Sicily and Northern Italy, and similar precessional frequency cyclicity was observed in the Pb isotope records for these sites as well. Comparing these records to proxies for Saharan dust and available whole rock data indicates that, while further analysis is necessary to draw strong conclusions, enhanced dust production during insolation minima may be driving the observed signal. These records also have implications for astronomical tuning; peaks in Pb isotope records driven by Saharan dust may be easier to connect directly to the insolation cycle, providing improved astronomical tuning points. Finally, a Pb isotope record derived using in-situ laser ablation performed on ferromanganese crust 3514-6 from the Lion Seamount, located west of Gibraltar within the MO plume, has provided evidence that plume depth shifted during the Pliocene. The record also suggests that Pb isotopes may not be a suitable proxy for changes in late Miocene Mediterranean-Atlantic exchange, since the Pb isotope signatures of regional water masses are too similar. To develop this record, the first published instance of laser ablation derived 230Thexcess measurements are combined with 10Be dating.
Resumo:
The response of "Kerman" pistachio trees budded on three different rootstocks (Pistacia terebinthus, Pista-cia atlantica and Pistacia integerrima) to regulated deficit irrigation (RDI) in shallow soils was studied for3 years. The trees were either fully irrigated (C treatment) or subjected to deficit irrigation during Stage IIof fruit growth with two water stress thresholds (T1 and T2). The irrigation scheduling for fully-irrigatedtrees and water-stressed trees was managed by means of midday stem water potential (?stem) measure-ments. The use of direct measurements of the water status allowed estimating accurately the irrigationrequirements for pistachio trees, with water reductions ranging from 46 to 205 mm in fully-irrigatedtrees. The combination of the ?stemuse and the RDI regime saved 43?70% in T1 and 48?73% in T2 ofwater compared to the calculated crop evapotranspiration (ETc) for fully irrigated treatment (C).Deficit irrigation during Stage II significantly reduced the vegetative growth of the trees. Yield and fruitquality were not affected by any irrigation regime, except during the first year of the study. Thus, theresults indicate that full irrigation scheduling and RDI can be achieved successfully using ?stemtool onpistachio trees growing in shallow soils. A ?stemthreshold of ?1.5 MPa during stage II (T1) was suggestedfor RDI scheduling, as it did not reduce the yield or the production value. However a ?stemthresholdof ?2.0 MPa (T2) resulted in a significant reduction and an extensive delay in the recovery of stomatalconductance (gl),with negative effects on long-term pistachio production.P. integerrima showed a weaker capacity of adaptation to the study conditions compared to P. atlanticaand P. terebinthus, having a tendency to get more stressed and to produce a lower quality crop.
Resumo:
Water samples were collected from 33 domestic wells, 2 springs, and 3 streams in the Shields River Basin (Basin) in southwest Montana. Samples were collected in 2013 to describe the chemical quality of groundwater in the Basin. Sampling was done to assess potential impacts to water quality from recent exploratory oil and gas drilling and to establish baseline water quality conditions. Wells were selected in areas near and away from oil and gas drilling and in areas susceptible to contamination. Water samples from surface water sites were collected in October to characterize base flow conditions. Physical characteristics of the land surface, soils, and shallow aquifers were used to assess groundwater susceptibility to contamination from the land surface. This analysis was completed using GIS. Samples were analyzed for major ions, trace metals, water isotopes of oxygen and hydrogen. A subset (24) of samples were analyzed for tritium and organic constituents (GRO, DRO, BTEX, methane, ethylene, and ethane). One sample exceeded the human health drinking water standard for selenium. Dissolved methane and ethylene gas were detected in six samples at concentrations less than 0.184 milligrams per liter. Three locations were resampled in 2014, and no methane or ethylene was detected. Shallow groundwater and streams are generally calcium- or sodium-bicarbonate type water with total dissolved solids concentration less than 300 milligrams per liter. Some wells produce either sodium-chloride or sodium-sulfate type water suggesting slower flow paths and more rock-water interaction. Tritium concentrations suggest that older water (TU< 0.8), recharged prior to the mid-1950’s, is generally sodium type, whereas younger water (TU > 4) is generally a calcium type. Water-quality data from this study were compared to available historic data in the Basin. Additionally, the USGS Produced Waters Geochemical database was queried for chemical data of produced waters from reservoir rocks throughout Montana and the surrounding states. Comparisons to historic and produced water chemical data suggest no impact to shallow groundwater quality from exploratory oil and gas drilling.
Resumo:
The impact of different irrigation scheduling regimes on the water use, yield and water productivity from a high-density olive grove cv. Cobrançosa in southern Portugal was assessed during the irrigation seasons of 2011, 2012, 2013 and 2014. The experiments were conducted in a commercial olive orchard at the Herdade Álamo de Cima, near Évora (38o 29' 49.44'' N, 7o 45' 8.83'' W; alt. 75 m) in southern Alentejo, Portugal. The orchard was established with 10-year old Cobrançosa trees in grids of 8.0 x 4.2 m (300 trees ha-1) in the E-W direction, and experiments conducted on a shallow sandy loam Regosoil Haplic soil. From mid-May to the end of September the orchard was irrigated and three plots were subjected to one of two irrigation treatments: a control treatment A, irrigated to replace 100% ETc, a moderate deficit irrigation treatment B irrigated to 70% of ETc, and a more severe deficit irrigation treatment C that provided for approximately 50% of ETc. Daily tree transpiration rates were obtained by continuously monitoring of sap flow in representative trees per treatment. Among the irrigated treatments, water use efficiency (WUE, ratio of water used to irrigation- water applied) of treatment C was the highest, with a value of 0.89, being treatment B slightly lower, with a WUE of 0.76. Olive harvest for 2012 was an exceptional “on year”. Bearing yields showed contrasting differences within years where an “on year” was followed by an “off year”. In 2011 and 2012 treatment B yields were 41 and 50% higher than treatment C, respectively. In 2013 treatment B yield was 45% higher than yield of the fully irrigated treatment A, and treatment C showed practically the same yield than treatment A. In the “on year” of 2014 treatment B averaged 48% higher yield than treatment C. Treatment B farm irrigation water productivity (WPI-Farm, ratio of yield to water applied) was the highest among all treatments. Treatment A showed the lowest conversion efficiency of all treatments, indicating treatment B as the adequate deficit irrigation treatment for our Cobrançosa orchard
Resumo:
The micellization of a homologous series of zwitterionic surfactants, a group of sulfobetaines, was studied using isothermal titration calorimetry (ITC) in the temperature range from 15 to 65 °C. The increase in both temperature and the alkyl chain length leads to more negative values of ΔGmic(0) , favoring the micellization. The entropic term (ΔSmic(0)) is predominant at lower temperatures, and above ca. 55-65 °C, the enthalpic term (ΔHmic(0)) becomes prevalent, figuring a jointly driven process as the temperature increases. The interaction of these sulfobetaines with different polymers was also studied by ITC. Among the polymers studied, only two induced the formation of micellar aggregates at lower surfactant concentration: poly(acrylic acid), PAA, probably due to the formation of hydrogen bonds between the carboxylic group of the polymer and the sulfonate group of the surfactant, and poly(sodium 4-styrenesulfonate), PSS, probably due to the incorporation of the hydrophobic styrene group into the micelles. The prevalence of the hydrophobic and not the electrostatic contributions to the interaction between sulfobetaine and PSS was confirmed by an increased interaction enthalpy in the presence of electrolytes (NaCl) and by the observation of a significant temperature dependence, the latter consistent with the proposed removal of hydrophobic groups from water.
Resumo:
In this work the archaea and eubacteria community of a hypersaline produced water from the Campos Basin that had been transported and discharged to an onshore storage facility was evaluated by 16S recombinant RNA (rRNA) gene sequence analysis. The produced water had a hypersaline salt content of 10 (w/v), had a carbon oxygen demand (COD) of 4,300 mg/l and contains phenol and other aromatic compounds. The high salt and COD content and the presence of toxic phenolic compounds present a problem for conventional discharge to open seawater. In previous studies, we demonstrated that the COD and phenolic content could be largely removed under aerobic conditions, without dilution, by either addition of phenol degrading Haloarchaea or the addition of nutrients alone. In this study our goal was to characterize the microbial community to gain further insight into the persistence of reservoir community members in the produced water and the potential for bioremediation of COD and toxic contaminants. Members of the archaea community were consistent with previously identified communities from mesothermic reservoirs. All identified archaea were located within the phylum Euryarchaeota, with 98 % being identified as methanogens while 2 % could not be affiliated with any known genus. Of the identified archaea, 37 % were identified as members of the strictly carbon-dioxide-reducing genus Methanoplanus and 59 % as members of the acetoclastic genus Methanosaeta. No Haloarchaea were detected, consistent with the need to add these organisms for COD and aromatic removal. Marinobacter and Halomonas dominated the eubacterial community. The presence of these genera is consistent with the ability to stimulate COD and aromatic removal with nutrient addition. In addition, anaerobic members of the phyla Thermotogae, Firmicutes, and unclassified eubacteria were identified and may represent reservoir organisms associated with the conversion hydrocarbons to methane.
Resumo:
Caffeine has already been used as an indicator of anthropogenic impacts, especially the ones related to the disposal of sewage in water bodies. In this work, the presence of caffeine has been correlated with the estrogenic activity of water samples measured using the BLYES assay. After testing 96 surface water samples, it was concluded that caffeine can be used to prioritize samples to be tested for estrogenic activity in water quality programs evaluating emerging contaminants with endocrine disruptor activity.