995 resultados para Serial number
Resumo:
Mechanisms underlying cognitive psychology and cerebral physiological of mental arithmetic with increasing are were studied by using behavioral methods and functional magnetic resonance imaging (fMRI). I. Studies on mechanism underlying cognitive psychology of mental arithmetic with increasing age These studies were accomplished in 172 normal subjects ranging from 20 to 79 years of age with above 12 years of education (Mean = 1.51, SD = 1.5). Five mental arithmetic tasks, "1000-1", "1000-3", "1000-7", "1000-13", "1000-17", were designed with a serial calculation in which subjects sequentially subtracted the same prime number (1, 3, 7, 13, 17) from another number 1000. The variables studied were mental arithmetic, age, working memory, and sensory-motor speed, and four studies were conducted: (1) Aging process of mental arithmetic with different difficulties, (2) mechanism of aging of mental arithmetic processing. (3) effects of working memory and sensory-motor speed on aging process of mental arithmetic, (4) model of cognitive aging of mental arithmetic, with statistical methods such as MANOVA, hierarchical multiple regression, stepwise regression analysis, structural equation modelling (SEM). The results were indicated as following: Study 1: There was an obvious interaction between age and mental arithmetic, in which reaction time (RT) increased with advancing age and more difficult mental arithmetic, and mental arithmetic efficiency (the ratio of accuracy to RT) deceased with advancing age and more difficult mental arithmetic; Mental arithmetic efficiency with different difficulties decreased in power function: Study 2: There were two mediators (latent variables) in aging process of mental arithmetic, and age had an effect on mental arithmetic with different difficulties through the two mediators; Study 3: There were obvious interactions between age and working memory, working memory and mental arithmetic; Working memory and sensory-motor speed had effects on aging process of mental arithmetic, in which the effect of working memory on aging process of mental arithmetic was about 30-50%, and the effect of sensory-motor speed on aging process of mental arithmetic was above 35%. Study 4: Age, working memory, and sensory-motor speed had effects on two latent variables (factor 1 and factor 2), then had effects on mental arithmetic with different difficulties through factor 1 which was relative to memory component, and factor 2 which relative to speed component and had an effect on factor 1 significantly. II. Functional magnetic resonance imaging study on metal arithmetic with increasing age This study was accomplished in 14 normal right-handed subjects ranging from 20 to 29 (7 subjects) and 60 to 69 (7 subjects) years of age by using functional magnetic resonance imaging apparatus, a superconductive Signa Horizon 1.5T MRI system. Two mental arithmetic tasks, "1000-3" and "1000-17", were designed with a serial calculation in which subjects sequentially subtracted the same prime number (3 or 17) from another number 1000 silently, and controlling task, "1000-0", in which subjects continually rehearsed number 1000 silently, was regarded as baseline, based on current "baseline-task" OFF-ON subtraction pattern. Original data collected by fMRI apparatus, were analyzed off-line in SUN SPARC working station by using current STIMULATE software. The analytical steps were composed of within-subject analysis, in which brain activated images about mental arithmetic with two difficulties were obtained by using t-test, and between-subject analysis, in which features of brain activation about mental arithmetic with two difficulties, the relationship between left and right hemisphere during mental arithmetic, and age differences of brain activation in young and elderly adults were examined by using non-parameter Wilcoxon test. The results were as following:
Resumo:
This report mainly focused on methodology of spatiotemporal patterns (STP) of cognitive potentials or event-related potentials (ERP). The representation of STP of brain wave is an important issue in the research of neural assemblies. This paper described methods of parametric 3D head or brain modeling and its corresponding interpolation for functional imaging based on brain waves. The 3D interpolation method is an extension of cortical imaging technique. It can be used with transformed domain features of brain wave on realistic head or brain models. The simulating results suggests that it is a better method in comparison with the global nearest neighbor technique. A stable and definite STP of brainwave referred as microstate may become basic element for comprehending sophisticated cognitive processes. Fuzzy c-mean algorithm was applied to segmentation STPs of ERP into microstates and corresponding membership functions. The optimal microstate number was estimated with both the trends of objective function against increasing clustering number and the decorrelation technique base don microstate shape similarity. Comparable spatial patterns may occur at different moments in time with fuzzy indices and thus the serial processing limit generated from behavioral methods has been break through. High-resolution frequency domain analysis was carried out with multivariate autoregressive model. Bases on a 3D interpolation mentioned above, visualization of dynamical coordination of cerebral network was realized with magnitude-squared partial coherence. Those technique illustrated with multichannel ERP of 9 subjects when they undertook Strop task. Stroop effects involves several regions during post-perception stage with technique of statistical parameter mapping based F-test [SPM(F)]. As SPM(F) suggested task effects occurred within 100 ms after stimuli presentation involved several sensory regions, it may reflect the top-down processing effect.
Resumo:
A vernier offset is detected at once among straight lines, and reaction times are almost independent of the number of simultaneously presented stimuli (distractors), indicating parallel processing of vernier offsets. Reaction times for identifying a vernier offset to one side among verniers offset to the opposite side increase with the number of distractors, indicating serial processing. Even deviations below a photoreceptor diameter can be detected at once. The visual system thus attains positional accuracy below the photoreceptor diameter simultaneously at different positions. I conclude that deviation from straightness, or change of orientation, is detected in parallel over the visual field. Discontinuities or gradients in orientation may represent an elementary feature of vision.
Resumo:
The Saliency Network proposed by Shashua and Ullman is a well-known approach to the problem of extracting salient curves from images while performing gap completion. This paper analyzes the Saliency Network. The Saliency Network is attractive for several reasons. First, the network generally prefers long and smooth curves over short or wiggly ones. While computing saliencies, the network also fills in gaps with smooth completions and tolerates noise. Finally, the network is locally connected, and its size is proportional to the size of the image. Nevertheless, our analysis reveals certain weaknesses with the method. In particular, we show cases in which the most salient element does not lie on the perceptually most salient curve. Furthermore, in some cases the saliency measure changes its preferences when curves are scaled uniformly. Also, we show that for certain fragmented curves the measure prefers large gaps over a few small gaps of the same total size. In addition, we analyze the time complexity required by the method. We show that the number of steps required for convergence in serial implementations is quadratic in the size of the network, and in parallel implementations is linear in the size of the network. We discuss problems due to coarse sampling of the range of possible orientations. We show that with proper sampling the complexity of the network becomes cubic in the size of the network. Finally, we consider the possibility of using the Saliency Network for grouping. We show that the Saliency Network recovers the most salient curve efficiently, but it has problems with identifying any salient curve other than the most salient one.
Resumo:
This report describes a knowledge-base system in which the information is stored in a network of small parallel processing elements ??de and link units ??ich are controlled by an external serial computer. This network is similar to the semantic network system of Quillian, but is much more tightly controlled. Such a network can perform certain critical deductions and searches very quickly; it avoids many of the problems of current systems, which must use complex heuristics to limit and guided their searches. It is argued (with examples) that the key operation in a knowledge-base system is the intersection of large explicit and semi-explicit sets. The parallel network system does this in a small, essentially constant number of cycles; a serial machine takes time proportional to the size of the sets, except in special cases.
Resumo:
No data (2012)
Resumo:
C.R. Bull and R. Zwiggelaar, 'Discrimination between low atomic number materials from their characteristic scattering of X-ray radiation', Journal of Agricultural Engineering Research 68 (2), 77-87 (1997)
Resumo:
Mavron, Vassili; McDonough, T.P.; Schrikhande, M.S., (2003) 'Quasi -symmetric designs with good blocks and intersection number one', Designs Codes and Cryptography 28(2) pp.147-162 RAE2008
Resumo:
Background Single nucleotide polymorphisms (SNPs) have been used extensively in genetics and epidemiology studies. Traditionally, SNPs that did not pass the Hardy-Weinberg equilibrium (HWE) test were excluded from these analyses. Many investigators have addressed possible causes for departure from HWE, including genotyping errors, population admixture and segmental duplication. Recent large-scale surveys have revealed abundant structural variations in the human genome, including copy number variations (CNVs). This suggests that a significant number of SNPs must be within these regions, which may cause deviation from HWE. Results We performed a Bayesian analysis on the potential effect of copy number variation, segmental duplication and genotyping errors on the behavior of SNPs. Our results suggest that copy number variation is a major factor of HWE violation for SNPs with a small minor allele frequency, when the sample size is large and the genotyping error rate is 0~1%. Conclusions Our study provides the posterior probability that a SNP falls in a CNV or a segmental duplication, given the observed allele frequency of the SNP, sample size and the significance level of HWE testing.
Resumo:
This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set. As we scale up the problem size and test on \hard" benchmark instances, we notice a degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found. We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration. Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.
Resumo:
We propose a multi-object multi-camera framework for tracking large numbers of tightly-spaced objects that rapidly move in three dimensions. We formulate the problem of finding correspondences across multiple views as a multidimensional assignment problem and use a greedy randomized adaptive search procedure to solve this NP-hard problem efficiently. To account for occlusions, we relax the one-to-one constraint that one measurement corresponds to one object and iteratively solve the relaxed assignment problem. After correspondences are established, object trajectories are estimated by stereoscopic reconstruction using an epipolar-neighborhood search. We embedded our method into a tracker-to-tracker multi-view fusion system that not only obtains the three-dimensional trajectories of closely-moving objects but also accurately settles track uncertainties that could not be resolved from single views due to occlusion. We conducted experiments to validate our greedy assignment procedure and our technique to recover from occlusions. We successfully track hundreds of flying bats and provide an analysis of their group behavior based on 150 reconstructed 3D trajectories.
Resumo:
A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.
Resumo:
In this paper, we introduce the Generalized Equality Classifier (GEC) for use as an unsupervised clustering algorithm in categorizing analog data. GEC is based on a formal definition of inexact equality originally developed for voting in fault tolerant software applications. GEC is defined using a metric space framework. The only parameter in GEC is a scalar threshold which defines the approximate equality of two patterns. Here, we compare the characteristics of GEC to the ART2-A algorithm (Carpenter, Grossberg, and Rosen, 1991). In particular, we show that GEC with the Hamming distance performs the same optimization as ART2. Moreover, GEC has lower computational requirements than AR12 on serial machines.
Resumo:
This article presents a new neural pattern recognition architecture on multichannel data representation. The architecture emploies generalized ART modules as building blocks to construct a supervised learning system generating recognition codes on channels dynamically selected in context using serial and parallel match trackings led by inter-ART vigilance signals.