920 resultados para Sensitivity Analysis
Resumo:
Triple quadrupole mass spectrometers coupled with high performance liquid chromatography are workhorses in quantitative bioanalyses. It provides substantial benefits including reproducibility, sensitivity and selectivity for trace analysis. Selected Reaction Monitoring allows targeted assay development but data sets generated contain very limited information. Data mining and analysis of non-targeted high-resolution mass spectrometry profiles of biological samples offer the opportunity to perform more exhaustive assessments, including quantitative and qualitative analysis. The objectives of this study was to test method precision and accuracy, statistically compare bupivacaine drug concentration in real study samples and verify if high resolution and accurate mass data collected in scan mode can actually permit retrospective data analysis, more specifically, extract metabolite related information. The precision and accuracy data presented using both instruments provided equivalent results. Overall, the accuracy was ranging from 106.2 to 113.2% and the precision observed was from 1.0 to 3.7%. Statistical comparisons using a linear regression between both methods reveal a coefficient of determination (R2) of 0.9996 and a slope of 1.02 demonstrating a very strong correlation between both methods. Individual sample comparison showed differences from -4.5% to 1.6% well within the accepted analytical error. Moreover, post acquisition extracted ion chromatograms at m/z 233.1648 ± 5 ppm (M-56) and m/z 305.2224 ± 5 ppm (M+16) revealed the presence of desbutyl-bupivacaine and three distinct hydroxylated bupivacaine metabolites. Post acquisition analysis allowed us to produce semiquantitative evaluations of the concentration-time profiles for bupicavaine metabolites.
Resumo:
Targeted peptide methods generally use HPLC-MS/MRM approaches. Although dependent on the instrumental resolution, interferences may occur while performing analysis of complex biological matrices. HPLC-MS/MRM3 is a technique, which provides a significantly better selectivity, compared with HPLC-MS/MRM assay. HPLC-MS/MRM3 allows the detection and quantitation by enriching standard MRM with secondary product ions that are generated within the linear ion trap. Substance P (SP) and neurokinin A (NKA) are tachykinin peptides playing a central role in pain transmission. The objective of this study was to verify whether HPLC-HPLCMS/ MRM3 could provide significant advantages over a more traditional HPLC-MS/MRM assay for the quantification of SP and NKA in rat spinal cord. The results suggest that reconstructed MRM3 chromatograms display significant improvements with the nearly complete elimination of interfering peaks but the sensitivity (i.e. signal-to-noise ratio) was severely reduced. The precision (%CV) observed was between 3.5% - 24.1% using HPLC-MS/MRM and in the range of 4.3% - 13.1% with HPLC-MS/MRM3, for SP and NKA. The observed accuracy was within 10% of the theoretical concentrations tested. HPLC-MS/MRM3 may improve the assay sensitivity to detect difference between samples by reducing significantly the potential of interferences and therefore reduce instrumental errors.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.
Resumo:
Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions
Resumo:
The article examines the commodity chain trap of marine fishery in Kerala, at both material and value terms, and its ramifications in the globalised fishery chains. The marketing chains both material and value, are very complex in nature since they involve many types of markets and large number of intermediaries and participants. The article also scrutinizes the sensitivity of consumers’ and country’s responses in terms of dietary and hygienic standards relating to seafood trade. In addition, it discusses the devastating effect about the recent stipulations like the US Bio- Terrorism Act and Shrimp anti-dumping duty on the Kerala fishery products
Resumo:
Reanalysis data obtained from data assimilation are increasingly used for diagnostic studies of the general circulation of the atmosphere, for the validation of modelling experiments and for estimating energy and water fluxes between the Earth surface and the atmosphere. Because fluxes are not specifically observed, but determined by the data assimilation system, they are not only influenced by the utilized observations but also by model physics and dynamics and by the assimilation method. In order to better understand the relative importance of humidity observations for the determination of the hydrological cycle, in this paper we describe an assimilation experiment using the ERA40 reanalysis system where all humidity data have been excluded from the observational data base. The surprising result is that the model, driven by the time evolution of wind, temperature and surface pressure, is able to almost completely reconstitute the large-scale hydrological cycle of the control assimilation without the use of any humidity data. In addition, analysis of the individual weather systems in the extratropics and tropics using an objective feature tracking analysis indicates that the humidity data have very little impact on these systems. We include a discussion of these results and possible consequences for the way moisture information is assimilated, as well as the potential consequences for the design of observing systems for climate monitoring. It is further suggested, with support from a simple assimilation study with another model, that model physics and dynamics play a decisive role for the hydrological cycle, stressing the need to better understand these aspects of model parametrization. .
Resumo:
A new method for assessing forecast skill and predictability that involves the identification and tracking of extratropical cyclones has been developed and implemented to obtain detailed information about the prediction of cyclones that cannot be obtained from more conventional analysis methodologies. The cyclones were identified and tracked along the forecast trajectories, and statistics were generated to determine the rate at which the position and intensity of the forecasted storms diverge from the analyzed tracks as a function of forecast lead time. The results show a higher level of skill in predicting the position of extratropical cyclones than the intensity. They also show that there is potential to improve the skill in predicting the position by 1 - 1.5 days and the intensity by 2 - 3 days, via improvements to the forecast model. Further analysis shows that forecasted storms move at a slower speed than analyzed storms on average and that there is a larger error in the predicted amplitudes of intense storms than the weaker storms. The results also show that some storms can be predicted up to 3 days before they are identified as an 850-hPa vorticity center in the analyses. In general, the results show a higher level of skill in the Northern Hemisphere (NH) than the Southern Hemisphere (SH); however, the rapid growth of NH winter storms is not very well predicted. The impact that observations of different types have on the prediction of the extratropical cyclones has also been explored, using forecasts integrated from analyses that were constructed from reduced observing systems. A terrestrial, satellite, and surface-based system were investigated and the results showed that the predictive skill of the terrestrial system was superior to the satellite system in the NH. Further analysis showed that the satellite system was not very good at predicting the growth of the storms. In the SH the terrestrial system has significantly less skill than the satellite system, highlighting the dominance of satellite observations in this hemisphere. The surface system has very poor predictive skill in both hemispheres.
Resumo:
The interannual variability of the hydrological cycle is diagnosed from the Hadley Centre and Geophysical Fluid Dynamics Laboratory (GFDL) climate models, both of which are forced by observed sea surface temperatures. The models produce a similar sensitivity of clear-sky outgoing longwave radiation to surface temperature of ∼2 W m−2 K−1, indicating a consistent and positive clear-sky radiative feedback. However, differences between changes in the temperature lapse-rate and the height dependence of moisture fluctuations suggest that contrasting mechanisms bring about this result. The GFDL model appears to give a weaker water vapor feedback (i.e., changes in specific humidity). This is counteracted by a smaller upper tropospheric temperature response to surface warming, which implies a compensating positive lapse-rate feedback.
Resumo:
One of the major uncertainties in the ability to predict future climate change, and hence its impacts, is the lack of knowledge of the earth's climate sensitivity. Here, data are combined from the 1985-96 Earth Radiation Budget Experiment (ERBE) with surface temperature change information and estimates of radiative forcing to diagnose the climate sensitivity. Importantly, the estimate is completely independent of climate model results. A climate feedback parameter of 2.3 +/- 1.4 W m(-2) K-1 is found. This corresponds to a 1.0-4.1-K range for the equilibrium warming due to a doubling of carbon dioxide (assuming Gaussian errors in observable parameters, which is approximately equivalent to a uniform "prior" in feedback parameter). The uncertainty range is due to a combination of the short time period for the analysis as well as uncertainties in the surface temperature time series and radiative forcing time series, mostly the former. Radiative forcings may not all be fully accounted for; however, all argument is presented that the estimate of climate sensitivity is still likely to be representative of longer-term climate change. The methodology can be used to 1) retrieve shortwave and longwave components of climate feedback and 2) suggest clear-sky and cloud feedback terms. There is preliminary evidence of a neutral or even negative longwave feedback in the observations, suggesting that current climate models may not be representing some processes correctly if they give a net positive longwave feedback.
Resumo:
This report forms part of a larger research programme on 'Reinterpreting the Urban-Rural Continuum', which conceptualises and investigates current knowledge and research gaps concerning 'the role that ecosystems services play in the livelihoods of the poor in regions undergoing rapid change'. The report aims to conduct a baseline appraisal of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. The appraisal is conducted at three spatial scales: global, regional (four consortia areas), and meso scale (case studies within the four regions). At all three scales of analysis water resources form the interweaving theme because water provides a vital provisioning service for people, supports all other ecosystem processes and because water resources are forecast to be severely affected under climate change scenarios. This report, combined with an Endnote library of over 1100 scientific papers, provides an annotated bibliography of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. After an introductory, section, Section 2 of the report defines water-related ecosystem services and how these are affected by human activities. Current knowledge and research gaps are then explored in relation to global scale climate and related hydrological changes (e.g. floods, droughts, flow regimes) (section 3). The report then discusses the impacts of climate changes on the ESPA regions, emphasising potential responses of biomes to the combined effects of climate change and human activities (particularly land use and management), and how these effects coupled with water store and flow regime manipulation by humans may affect the functioning of catchments and their ecosystem services (section 4). Finally, at the meso-scale, case studies are presented from within the ESPA regions to illustrate the close coupling of human activities and catchment performance in the context of environmental change (section 5). At the end of each section, research needs are identified and justified. These research needs are then amalgamated in section 6.