990 resultados para Sedimentation rates


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study relates the organic sedimentation characteristics to the lithostratigraphic successionsthat were observed at Site 767 (Celebes Sea) and Site 768 (Sulu Sea) during ODP Leg 124. It is based on the total organic carbon content (TOC) of the sediments, on the petrographictype and maturity of the organic matter, and on the TOC accumulation rates calculated for the lithostratigraphic units. In the Celebes and Sulu Seas sediments, the organic matter is mainly of terrestrial origin with the highest concentrations and TOC accumulation rates occurring in the middle Miocene turbiditic sequences that correspond to a major compressive event between the Philippine Mobile Belt and the Palawan, Cagayan, and Sulu Ridges. Petrographic analysis of the Eocene and lower Miocene organic matter in the Celebes Sea shows that it consists only of highly degraded terrestrial particles. This observation and the very low TOC accumulation rates indicate poor conditions for organic carbon preservation during this open-ocean phase of the Celebes Basin formation. The organic matter, either of marine or terrestrial origin, is much better preserved in the younger sediments, suggesting physico-chemical changes in the depositional environment. Because of the dilution phenomena by turbidites, it is difficult to observe the progressive improvement of the organic matter preservation throughout the turbiditic series. The same change in preservation is broadly observed in the Sulu Sea from the early Miocene (rapid opening phase of the basin with massive pyroclastic deposits) to the present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the late Pliocene-middle Pleistocene, 63 species of elongate, bathyal-upper abyssal benthic foraminifera (Extinction Group = Stilostomellidae, Pleurostomellidae, some Nodosariidae) declined in abundance and finally disappeared in the northern Indian Ocean (ODP Sites 722, 758), as part of the global extinction of at least 88 related species at this time. The detailed record of withdrawal of these species differs by depth and geography in the Indian Ocean. In northwest Indian Ocean Site 722 (2045 m), the Extinction Group of 54 species comprised 2-15% of the benthic foraminiferal fauna in the earliest Pleistocene, but declined dramatically during the onset of the mid-Pleistocene Transition (MPT) at 1.2-1.1 Ma, with all but three species disappearing by the end of the MPT (~0.6 Ma). In northeast Indian Ocean Site 758 (2925 m), the Extinction Group of 44 species comprised 1-5% of the benthic foraminiferal fauna at ~3.3-2.6 Ma, but declined in abundance and diversity in three steps, at ~2.5, 1.7, and 1.2 Ma, with all but one species disappearing by the end of the MPT. At both sites there are strong positive correlations between the accumulation rate of the Extinction Group and proxies indicating low-oxygen conditions with a high organic carbon input. In both sites, there was a pulsed decline in Extinction Group abundance and species richness, especially in glacial periods, with some partial recoveries in interglacials. We infer that the glacial declines at the deeper Site 758 were a result of increased production of colder, well-ventilated Antarctic Bottom Water (AABW), particularly in the late Pliocene and during the MPT. The Extinction Group at shallower water depths (Site 722) were not impacted by the deeper water mass changes until the onset of the MPT, when cold, well-ventilated Glacial North Atlantic Intermediate Water (GNAIW) production increased and may have spread into the Indian Ocean. Increased chemical ventilation at various water depths since late Pliocene, particularly in glacial periods, possibly in association with decreased or more fluctuating organic carbon flux, might be responsible for the pulsed global decline and extinction of this rather specialised group of benthic foraminifera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upper Pliocene through Holocene sediments recovered at Site 798 in the Japan Sea (Oki Ridge) exhibit rhythmic variation in weight percent biogenic opal at intervals of ~5 m and periods equivalent to the 41-k.y. obliquity cycle. Variance at 17 and 100 k.y. is observed prior to 1.3 Ma. These cycles are also clearly defined by log data and correspond to clusters of decimeter-scale dark-colored sediment units alternating with clusters of light-colored units. Opal content varies between 3% and 22% between 0 and 1.3 Ma and from 3% to 43% between 1.3 and 2.6 Ma. Long-term opal accumulation rates average 1.8 g/cm**2/k.y. in the late Pliocene/early Pleistocene and decrease by about 60% at ~1.3 Ma. Rough calculations suggest that opal accumulation rates increased and terrigenous flux decreased during the Holocene relative to the last glacial period. Our age control is not yet sufficient to allow a similar analysis of the 41-k.y. cyclicity in opal content throughout the Pleistocene. Stable isotope results from planktonic foraminifers confirm previous suggestions of a strong surface-water freshening event during isotope stage 2; however, this episode appears to be unique during the Pleistocene. Benthic foraminifers are depleted in 18O during parts of glacial stages 2 and 6 relative to adjacent interglacials, suggesting unusual warming and/or freshening of deep waters. Collectively, the stable isotope and %opal data are consistent with continuing isolation of the Japan Sea during the Quaternary with important transitions occurring at 1.3, 0.7 to 1.0, and 0.2 to 0.3 Ma. Complex relationships among the stable isotope results, %opal data, and sediment characteristics such as color and organic and inorganic carbon content preclude development of a simple model to explain cyclical sedimentation. Opal maxima occur within both light and dark intervals and the processes that control surface-water productivity are at times decoupled from the factors that regulate deep-water dysaerobia. We suggest that water column overturn is controlled largely by regional atmospheric circulation that must also have an as yet poorly understood effect on surface-water fertility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on sedimentological, mineralogical, geochemical, and micropaleontological data on comprehensively investigated Core ASV16-1372, Late Pleistocene - Holocene sedimentation history is reconstructed for the Voring marginal plateau (continental margin of the Norwegian Sea). An age model constructed is based on correlation with several adjacent cores, for which AMS radiocarbon datings are available. Lithostratigraphic correlation made it possible to compare stratigraphic division of Core ASV16-1372 with other cores sampled on the Voring Plateau and the shelf and continental slope off Central Norway. It is concluded that compositional and structural features of bottom sediments are correlated with paleoclimatic and paleoceanographic changes, variations in provenances, as well as agents and pathways of sedimentary material transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pteropods are important organisms in high-latitude ecosystems, and they are expected to severely suffer from climate change in the near future. In this study, sedimentation patterns of two pteropod species, the polar Limacina helicina and the subarctic boreal L. retroversa, are presented. Time series data received by moored sediment traps at the Long-Term Ecological Research (LTER) Observatory HAUSGARTEN in eastern Fram Strait were analyzed during the years 2008 to 2012. Results were derived from four different deployment depths (~200, 1,250, 2,400, and 2,550 m) at two different sites (79° N, 04°20' E; 79°43' N, 04°30' E). A species-specific sedimentation pattern was present at all depths and at both sites showing maximal flux rates during September/October for L. helicina and in November/December for L. retroversa. The polar L. helicina was outnumbered by L. retroversa (55-99 %) at both positions and at all depths supporting the recently observed trend toward the dominance of the subarctic boreal species. The largest decrease in pteropod abundance occurred within the mesopelagic zone (~200-1,250 m), indicating loss via microbial degradation and grazing. Pteropod carbonate (aragonite) amounted up to ~75 % of the total carbonate flux at 200 m and 2-13 % of the aragonite found in the shallow traps arrived at the deep sediment traps (~160 m above the seafloor), revealing the significance of pteropods in carbonate export at Fram Strait. Our results emphasize the relevance and the need for continuation of long-term studies to detect and trace changes in pteropod abundances and community composition and thus in the vertical transport of aragonite.