995 resultados para Science, Ancient.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonates are organophosphorus molecules that contain the highly stable C-P bond, rather than the more common, and more labile, C-O-P phosphate ester bond. They have ancient origins but their biosynthesis is widespread among more primitive organisms and their importance in the contemporary biosphere is increasingly recognized; for example phosphonate-P is believed to play a particularly significant role in the productivity of the oceans. The microbial degradation of phosphonates was originally thought to occur only under conditions of phosphate limitation, mediated exclusively by the poorly characterized C-P lyase multienzyme system, under Pho regulon control. However, more recent studies have demonstrated the Pho-independent mineralization by environmental bacteria of three of the most widely distributed biogenic phosphonates: 2-aminoethylphosphonic acid (ciliatine), phosphonoacetic acid, and 2-amino-3-phosphonopropionic acid (phosphonoalanine). The three phosphonohydrolases responsible have unique specificities and are members of separate enzyme superfamilies; their expression is regulated by distinct members of the LysR family of bacterial transcriptional regulators, for each of which the phosphonate substrate of the respective degradative operon serves as coinducer. Previously no organophosphorus compound was known to induce the enzymes required for its own degradation. Whole-genome and metagenome sequence analysis indicates that the genes encoding these newly described C-P hydrolases are distributed widely among prokaryotes. As they are able to function under conditions in which C-P lyases are inactive, the three enzymes may play a hitherto-unrecognized role in phosphonate breakdown in the environment and hence make a significant contribution to global biogeochemical P-cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have utilised polymorphic chloroplast microsatellites to analyse cytoplasmic relationships between accessions in the genera Triticum and Aegilops. Sequencing of PCR products revealed point mutations and insertions/deletions in addition to the standard repeat length expansion/contraction which most likely represent ancient synapomorphies. Phylogenetic analyses revealed three distinct groups of accessions. One of these contained all the non-Aegilops speltoides S-type cytoplasm species, another comprised almost exclusively A, C, D, M, N, T and U cytoplasm-type accessions and the third contained the polyploid Triticum species and all the Ae. speltoides accessions, further confirming that Ae. speltoides or a closely related but now extinct species was the original B-genome donor of cultivated polyploid wheat. Successive decreases in levels of genetic diversity due to domestication were also observed. Finally, we highlight the importance of elucidating longer-term evolutionary processes operating at microsatellite repeat loci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In his presidential address to the Belfast meeting of the British Association for the Advancement of Science in 1874, John Tyndall launched what David Livingstone has called a ‘frontal assault on teleology and Christian theism’. Using Tyndall's intervention as a starting point, this paper seeks to understand the attitudes of Presbyterians in the north of Ireland to science in the first three-quarters of the nineteenth century. The first section outlines some background, including the attitude of Presbyterians to science in the eighteenth century, the development of educational facilities in Ireland for the training of Presbyterian ministers, and the specific cultural and political circumstances in Ireland that influenced Presbyterian responses to science more generally. The next two sections examine two specific applications by Irish Presbyterians of the term ‘science’: first, the emergence of a distinctive Presbyterian theology of nature and the application of inductive scientific methodology to the study of theology, and second, the Presbyterian conviction that mind had ascendancy over matter which underpinned their commitment to the development of a science of the mind. The final two sections examine, in turn, the relationship between science and an eschatological reading of the signs of the times, and attitudes to Darwinian evolution in the fifteen years between the publication of The Origin of Species in 1859 and Tyndall's speech in 1874.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HOX genes are evolutionarily highly conserved. The HOX proteins which they encode are master regulators of embryonic development and continue to be expressed throughout postnatal life. The 39 human HOX genes are located in four clusters (A-D) on different chromosomes at 7p15, 17q21 [corrected] 12q13, and 2q31 respectively and are assumed to have arisen by duplication and divergence from a primordial homeobox gene. Disorders of limb formation, such as hand-foot-genital syndrome, have been traced to mutations in HOXA13 and HOXD13. Evolutionary conservation provides unlimited scope for experimental investigation of the functional control of the Hox gene network which is providing important insights into human disease. Chromosomal translocations involving the MLL gene, the human homologue of the Drosophila gene trithorax, create fusion genes which exhibit gain of function and are associated with aggressive leukaemias in both adults and children. To date 39 partner genes for MLL have been cloned from patients with leukaemia. Models based on specific translocations of MLL and individual HOX genes are now the subject of intense research aimed at understanding the molecular programs involved, and ultimately the design of chemotherapeutic agents for leukaemia. Investigation of the role of HOX genes in cancer has led to the concept that oncology may recapitulate ontology, a challenging postulate for experimentalists in view of the functional redundancy implicit in the HOX gene network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study focuses on the evidence for tuberculosis apparent in an Iron Age population recovered from the cemetery of Aymyrlyg, Tyva (Tuva), South Siberia. A recent wholly molecular study of five of the cases confirmed the presence of Mycobacterium tuberculosis (MTB) complex DNA in four of the individuals. In all cases the disease was caused by strains of Mycobacterium bovis rather than Mycobacterium tuberculosis and represents the first positive identification of the bovine form of the disease in archaeological human remains. Details of the palaeopathological characteristics of the cases are provided in the current paper, while the molecular observations are extended to include a quantitative evaluation of the surviving mycobacterial DNA using real-time PCR. The observation that bovine tuberculosis was the pathogen responsible is discussed in terms of current understanding of the evolution of the MTB complex as well as the implications for future ancient DNA studies in this area.