893 resultados para Scheduling.
Resumo:
Process control systems are designed for a closed-loop peak magnitude of 2dB, which corresponds to a damping coefficient () of 0.5 approximately. With this specified constraint, the designer should choose and/or design the loop components to maintain a constant relative stability. However, the manipulative variable in almost all chemical processes will be the flow rate of a process stream. Since the gains and the time constants of the process will be functions of the manipulative variable, a constant relative stability cannot be maintained. Up to now, this problem has been overcome either by selecting proper control valve flow characteristics or by gain scheduling of controller parameters. Nevertheless, if a wrong control valve selection is made then one has to account for huge loss in controllability or eventually it may lead to an unstable control system. To overcome these problems, a compensator device that can bring back the relative stability of the control system was proposed. This compensator is similar to a dynamic nonlinear controller that has both online and offline information on several factors related to the control system. The design and analysis of the proposed compensator is discussed in this article. Finally, the performance of the compensator is validated by applying it to a two-tank blending process. It has been observed that by using a compensator in the process control system, the relative stability could be brought back to a great extent despite the effects of changes in manipulative flow rate.
Resumo:
Production scheduling in a flexible manufacturing system (FMS) is a real-time combinatorial optimization problem that has been proved to be NP-complete. Solving this problem needs on-line monitoring of plan execution and requires real-time decision-making in selecting alternative routings, assigning required resources, and rescheduling when failures occur in the system. Expert systems provide a natural framework for solving this kind of NP-complete problems.In this paper an expert system with a novel parallel heuristic approach is implemented for automatic short-term dynamic scheduling of FMS. The principal features of the expert system presented in this paper include easy rescheduling, on-line plan execution, load balancing, an on-line garbage collection process, and the use of advanced knowledge representational schemes. Its effectiveness is demonstrated with two examples.
Resumo:
We consider the problem of minimizing the total completion time on a single batch processing machine. The set of jobs to be scheduled can be partitioned into a number of families, where all jobs in the same family have the same processing time. The machine can process at most B jobs simultaneously as a batch, and the processing time of a batch is equal to the processing time of the longest job in the batch. We analyze that properties of an optimal schedule and develop a dynamic programming algorithm of polynomial time complexity when the number of job families is fixed. The research is motivated by the problem of scheduling burn-in ovens in the semiconductor industry
Resumo:
Clustered VLIW architectures solve the scalability problem associated with flat VLIW architectures by partitioning the register file and connecting only a subset of the functional units to a register file. However, inter-cluster communication in clustered architectures leads to increased leakage in functional components and a high number of register accesses. In this paper, we propose compiler scheduling algorithms targeting two previously ignored power-hungry components in clustered VLIW architectures, viz., instruction decoder and register file. We consider a split decoder design and propose a new energy-aware instruction scheduling algorithm that provides 14.5% and 17.3% benefit in the decoder power consumption on an average over a purely hardware based scheme in the context of 2-clustered and 4-clustered VLIW machines. In the case of register files, we propose two new scheduling algorithms that exploit limited register snooping capability to reduce extra register file accesses. The proposed algorithms reduce register file power consumption on an average by 6.85% and 11.90% (10.39% and 17.78%), respectively, along with performance improvement of 4.81% and 5.34% (9.39% and 11.16%) over a traditional greedy algorithm for 2-clustered (4-clustered) VLIW machine. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Frequency-domain scheduling and rate adaptation have helped next generation orthogonal frequency division multiple access (OFDMA) based wireless cellular systems such as Long Term Evolution (LTE) achieve significantly higher spectral efficiencies. To overcome the severe uplink feedback bandwidth constraints, LTE uses several techniques to reduce the feedback required by a frequency-domain scheduler about the channel state information of all subcarriers of all users. In this paper, we analyze the throughput achieved by the User Selected Subband feedback scheme of LTE. In it, a user feeds back only the indices of the best M subbands and a single 4-bit estimate of the average rate achievable over all selected M subbands. In addition, we compare the performance with the subband-level feedback scheme of LTE, and highlight the role of the scheduler by comparing the performances of the unfair greedy scheduler and the proportional fair (PF) scheduler. Our analysis sheds several insights into the working of the feedback reduction techniques used in LTE.
Resumo:
CD-ROMs have proliferated as a distribution media for desktop machines for a large variety of multimedia applications (targeted for a single-user environment) like encyclopedias, magazines and games. With CD-ROM capacities up to 3 GB being available in the near future, they will form an integral part of Video on Demand (VoD) servers to store full-length movies and multimedia. In the first section of this paper we look at issues related to the single- user desktop environment. Since these multimedia applications are highly interactive in nature, we take a pragmatic approach, and have made a detailed study of the multimedia application behavior in terms of the I/O request patterns generated to the CD-ROM subsystem by tracing these patterns. We discuss prefetch buffer design and seek time characteristics in the context of the analysis of these traces. We also propose an adaptive main-memory hosted cache that receives caching hints from the application to reduce the latency when the user moves from one node of the hyper graph to another. In the second section we look at the use of CD-ROM in a VoD server and discuss the problem of scheduling multiple request streams and buffer management in this scenario. We adapt the C-SCAN (Circular SCAN) algorithm to suit the CD-ROM drive characteristics and prove that it is optimal in terms of buffer size management. We provide computationally inexpensive relations by which this algorithm can be implemented. We then propose an admission control algorithm which admits new request streams without disrupting the continuity of playback of the previous request streams. The algorithm also supports operations such as fast forward and replay. Finally, we discuss the problem of optimal placement of MPEG streams on CD-ROMs in the third section.
Resumo:
This paper reports new results concerning the capabilities of a family of service disciplines aimed at providing per-connection end-to-end delay (and throughput) guarantees in high-speed networks. This family consists of the class of rate-controlled service disciplines, in which traffic from a connection is reshaped to conform to specific traffic characteristics, at every hop on its path. When used together with a scheduling policy at each node, this reshaping enables the network to provide end-to-end delay guarantees to individual connections. The main advantages of this family of service disciplines are their implementation simplicity and flexibility. On the other hand, because the delay guarantees provided are based on summing worst case delays at each node, it has also been argued that the resulting bounds are very conservative which may more than offset the benefits. In particular, other service disciplines such as those based on Fair Queueing or Generalized Processor Sharing (GPS), have been shown to provide much tighter delay bounds. As a result, these disciplines, although more complex from an implementation point-of-view, have been considered for the purpose of providing end-to-end guarantees in high-speed networks. In this paper, we show that through ''proper'' selection of the reshaping to which we subject the traffic of a connection, the penalty incurred by computing end-to-end delay bounds based on worst cases at each node can be alleviated. Specifically, we show how rate-controlled service disciplines can be designed to outperform the Rate Proportional Processor Sharing (RPPS) service discipline. Based on these findings, we believe that rate-controlled service disciplines provide a very powerful and practical solution to the problem of providing end-to-end guarantees in high-speed networks.
Resumo:
Management of large projects, especially the ones in which a major component of R&D is involved and those requiring knowledge from diverse specialised and sophisticated fields, may be classified as semi-structured problems. In these problems, there is some knowledge about the nature of the work involved, but there are also uncertainties associated with emerging technologies. In order to draw up a plan and schedule of activities of such a large and complex project, the project manager is faced with a host of complex decisions that he has to take, such as, when to start an activity, for how long the activity is likely to continue, etc. An Intelligent Decision Support System (IDSS) which aids the manager in decision making and drawing up a feasible schedule of activities while taking into consideration the constraints of resources and time, will have a considerable impact on the efficient management of the project. This report discusses the design of an IDSS that helps in project planning phase through the scheduling phase. The IDSS uses a new project scheduling tool, the Project Influence Graph (PIG).
Resumo:
We consider the problem of wireless channel allocation to multiple users. A slot is given to a user with a highest metric (e.g., channel gain) in that slot. The scheduler may not know the channel states of all the users at the beginning of each slot. In this scenario opportunistic splitting is an attractive solution. However this algorithm requires that the metrics of different users form independent, identically distributed (iid) sequences with same distribution and that their distribution and number be known to the scheduler. This limits the usefulness of opportunistic splitting. In this paper we develop a parametric version of this algorithm. The optimal parameters of the algorithm are learnt online through a stochastic approximation scheme. Our algorithm does not require the metrics of different users to have the same distribution. The statistics of these metrics and the number of users can be unknown and also vary with time. Each metric sequence can be Markov. We prove the convergence of the algorithm and show its utility by scheduling the channel to maximize its throughput while satisfying some fairness and/or quality of service constraints.
Resumo:
The integration of different wireless networks, such as GSM and WiFi, as a two-tier hybrid wireless network is more popular and economical. Efficient bandwidth management, call admission control strategies and mobility management are important issues in supporting multiple types of services with different bandwidth requirements in hybrid networks. In particular, bandwidth is a critical commodity because of the type of transactions supported by these hybrid networks, which may have varying bandwidth and time requirements. In this paper, we consider such a problem in a hybrid wireless network installed in a superstore environment and design a bandwidth management algorithm based on the priority level, classification of the incoming transactions. Our scheme uses a downlink transaction scheduling algorithm, which decides how to schedule the outgoing transactions based on their priority level with efficient use of available bandwidth. The transaction scheduling algorithm is used to maximize the number of transaction-executions. The proposed scheme is simulated in a superstore environment with multi Rooms. The performance results describe that the proposed scheme can considerably improve the bandwidth utilization by reducing transaction blocking and accommodating more essential transactions at the peak time of the business.
Resumo:
Just-in-Time (JIT) compilers for Java can be augmented by making use of runtime profile information to produce better quality code and hence achieve higher performance. In a JIT compilation environment, the profile information obtained can be readily exploited in the same run to aid recompilation and optimization of frequently executed (hot) methods. This paper discusses a low overhead path profiling scheme for dynamically profiling AT produced native code. The profile information is used in recompilation during a subsequent invocation of the hot method. During recompilation tree regions along the hot paths are enlarged and instruction scheduling at the superblock level is performed. We have used the open source LaTTe AT compiler framework for our implementation. Our results on a SPARC platform for SPEC JVM98 benchmarks indicate that (i) there is a significant reduction in the number of tree regions along the hot paths, and (ii) profile aided recompilation in LaTTe achieves performance comparable to that of adaptive LaTTe in spite of retranslation and profiling overheads.
Resumo:
Large-grain synchronous dataflow graphs or multi-rate graphs have the distinct feature that the nodes of the dataflow graph fire at different rates. Such multi-rate large-grain dataflow graphs have been widely regarded as a powerful programming model for DSP applications. In this paper we propose a method to minimize buffer storage requirement in constructing rate-optimal compile-time (MBRO) schedules for multi-rate dataflow graphs. We demonstrate that the constraints to minimize buffer storage while executing at the optimal computation rate (i.e. the maximum possible computation rate without storage constraints) can be formulated as a unified linear programming problem in our framework. A novel feature of our method is that in constructing the rate-optimal schedule, it directly minimizes the memory requirement by choosing the schedule time of nodes appropriately. Lastly, a new circular-arc interval graph coloring algorithm has been proposed to further reduce the memory requirement by allowing buffer sharing among the arcs of the multi-rate dataflow graph. We have constructed an experimental testbed which implements our MBRO scheduling algorithm as well as (i) the widely used periodic admissible parallel schedules (also known as block schedules) proposed by Lee and Messerschmitt (IEEE Transactions on Computers, vol. 36, no. 1, 1987, pp. 24-35), (ii) the optimal scheduling buffer allocation (OSBA) algorithm of Ning and Gao (Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, SC, Jan. 10-13, 1993, pp. 29-42), and (iii) the multi-rate software pipelining (MRSP) algorithm (Govindarajan and Gao, in Proceedings of the 1993 International Conference on Application Specific Array Processors, Venice, Italy, Oct. 25-27, 1993, pp. 77-88). Schedules generated for a number of random dataflow graphs and for a set of DSP application programs using the different scheduling methods are compared. The experimental results have demonstrated a significant improvement (10-20%) in buffer requirements for the MBRO schedules compared to the schedules generated by the other three methods, without sacrificing the computation rate. The MBRO method also gives a 20% average improvement in computation rate compared to Lee's Block scheduling method.
Resumo:
This paper presents a prototype of a fuzzy system for alleviation of network overloads in the day-to-day operation of power systems. The control used for overload alleviation is real power generation rescheduling. Generation Shift Sensitivity Factors (GSSF) are computed accurately, using a more realistic operational load flow model. Overloading of lines and sensitivity of controlling variables are translated into fuzzy set notations to formulate the relation between overloading of line and controlling ability of generation scheduling. A fuzzy rule based system is formed to select the controllers, their movement direction and step size. Overall sensitivity of line loading to each of the generation is also considered in selecting the controller. Results obtained for network overload alleviation of two modified Indian power networks of 24 bus and 82 bus with line outage contingencies are presented for illustration purposes.
Resumo:
Hybrid wireless networks are extensively used in the superstores, market places, malls, etc. and provide high QoS (Quality of Service) to the end-users has become a challenging task. In this paper, we propose a policy-based transaction-aware QoS management architecture in a hybrid wireless superstore environment. The proposed scheme operates at the transaction level, for the downlink QoS management. We derive a policy for the estimation of QoS parameters, like, delay, jitter, bandwidth, availability, packet loss for every transaction before scheduling on the downlink. We also propose a QoS monitor which monitors the specified QoS and automatically adjusts the QoS according to the requirement. The proposed scheme has been simulated in hybrid wireless superstore environment and tested for various superstore transactions. The results shows that the policy-based transaction QoS management is enhance the performance and utilize network resources efficiently at the peak time of the superstore business.
Resumo:
The poor performance of TCP over multi-hop wireless networks is well known. In this paper we explore to what extent network coding can help to improve the throughput performance of TCP controlled bulk transfers over a chain topology multi-hop wireless network. The nodes use a CSMA/ CA mechanism, such as IEEE 802.11’s DCF, to perform distributed packet scheduling. The reverse flowing TCP ACKs are sought to be X-ORed with forward flowing TCP data packets. We find that, without any modification to theMAC protocol, the gain from network coding is negligible. The inherent coordination problem of carrier sensing based random access in multi-hop wireless networks dominates the performance. We provide a theoretical analysis that yields a throughput bound with network coding. We then propose a distributed modification of the IEEE 802.11 DCF, based on tuning the back-off mechanism using a feedback approach. Simulation studies show that the proposed mechanism when combined with network coding, improves the performance of a TCP session by more than 100%.