884 resultados para Scaffolds, Microstructure, Cell adhesion, Confocal microscopy, Image analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoplex-type nanoaggregates prepared from pEGFP-C3 plasmid DNA (pDNA) and mixed liposomes, with a gemini cationic lipid (CL) 1,2-bis(hexadecyl imidazolium) alkanes], referred as (C(16)Im)(2)C-n (where C-n is the alkane spacer length, n = 2, 3, 5, or 12, between the imidazolium heads) and DOPE zwitterionic lipid, have been analyzed by zeta potential, gel electrophoresis, SAXS, cryo-TEM, fluorescence anisotropy, transfection efficiency, fluorescence confocal microscopy, and cell viability/cytotoxicity experiments to establish a structure-biological activity relationship. The study, carried out at several mixed liposome compositions, alpha, and effective charge ratios, rho(eff), of the lipoplex, demonstrates that the transfection of pDNA using CLs initially requires the determination of the effective charge of both. The electrochemical study confirms that CLs with a delocalizable positive charge in their headgroups yield an effective positive charge that is 90% of their expected nominal one, while pDNA is compacted yielding an effective negative charge which is only 10-25% than that of the linear DNA. SAXS diffractograms show that lipoplexes formed by CLs with shorter spacer (n = 2, 3, or 5) present three lamellar structures, two of them in coexistence, while those formed by CL with longest spacer (n = 12) present two additional inverted hexagonal structures. Cryo-TEM micrographs show nanoaggregates with two multilamellar structures, a cluster-type (at low alpha value) and a fingerprint-type, that coexist with the cluster-type at moderate alpha composition. The optimized transfection efficiency (TE) of pDNA, in HEK293T, HeLa, and H1299 cells was higher using lipoplexes containing gemini CLs with shorter spacers at low a value. Each lipid formulation did not show any significant levels of toxicity, the reported lipoplexes being adequate DNA vectors for gene therapy and considerably better than both Lipofectamine 2000 and CLs of the 1,2-bis(hexadecyl ammnoniun) alkane series, recently reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural dynamics of dendritic spines is one of the key correlative measures of synaptic plasticity for encoding short-term and long-term memory. Optical studies of structural changes in brain tissue using confocal microscopy face difficulties of scattering. This results in low signal-to-noise ratio and thus limiting the imaging depth to few tens of microns. Multiphoton microscopy (MpM) overcomes this limitation by using low-energy photons to cause localized excitation and achieve high resolution in all three dimensions. Multiple low-energy photons with longer wavelengths minimize scattering and allow access to deeper brain regions at several hundred microns. In this article, we provide a basic understanding of the physical phenomena that give MpM an edge over conventional microscopy. Further, we highlight a few of the key studies in the field of learning and memory which would not have been possible without the advent of MpM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Antiretroviral Therapy (ART) is currently the major therapeutic intervention in the treatment of AIDS. ART, however, is severely limited due to poor availability, high cytotoxicity, and enhanced metabolism and clearance of the drug molecules by the renal system. The use of nanocarriers encapsulating the antiretroviral drugs may provide a solution to the aforementioned problems. Importantly, the application of mildly immunogenic polymeric carrier confers the advantage of making the nanoparticles more visible to the immune system leading to their efficient uptake by the phagocytes. Methods: The saquinavir-loaded chitosan nanopartides were characterized by transmission electron microscopy and differential scanning calorimetry and analyzed for the encapsulation efficiency, swelling characteristics, particle size properties, and the zeta potential. Furthermore, cellular uptake of the chitosan nanocarriers was evaluated using confocal microscopy and Flow cytometry. The antiviral efficacy was quantified using viral infection of the target cells. Results: Using novel chitosan carriers loaded with saquinavir, a protease inhibitor, we demonstrate a drug encapsulation efficiency of 75% and cell targeting efficiency greater than 92%. As compared to the soluble drug control, the saquinavir-loaded chitosan carriers caused superior control of the viral proliferation as measured by using two different viral strains, NL4-3 and Indie-C1, and two different target T-cells, Jurkat and CEM-CCR5. Conclusion: Chitosan nanoparticles loaded with saquinavir were characterized and they demonstrated superior drug loading potential with greater cell targeting efficiency leading to efficient control of the viral proliferation in target T-cells. General significance: Our data ascertain the potential of chitosan nanocarriers as novel vehicles for HIV-1 therapeutics. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, a cooling channel is employed to produce semi-solid A356 alloy slurry. To understand the transport process involved, a 3D non-isothermal, multiphase volume averaging model has been developed for simulation of the semi-solid slurry generation process in the cooling channel. For simulation purpose, the three phases considered are the parent melt, the nearly spherical grains and air as separated but highly coupled interpenetrating continua. The conservation equations of mass, momentum, energy and species have been solved for each phase and the thermal and mechanical interactions (drag force) among the phases have been considered using appropriate model. The superheated liquid alloy is poured at the top of the cooling slope/channel, where specified velocity inlet boundary condition is used in the model, and allowed to flow along gravity through the channel. The melt loses its superheat and becomes semisolid up to the end of cooling channel due to the evolving -Al grains with decreasing temperature. The air phase forms a definable air/liquid melt interface, i.e. free surface, due its low density. The results obtained from the present model includes volume fractions of three different phases considered, grain evolution, grain growth rate, size and distribution of solid grains. The effect of key process variables such as pouring temperature, slope angle of the cooling channel and cooling channel wall temperature on temperature distribution, velocity distribution, grain formation and volume fraction of different phases are also studied. The results obtained from the simulations are validated by microstructure study using SEM and quantitative image analysis of the semi-solid slurry microstructure obtained from the experimental set-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gray water treatment and reuse is an immediate option to counter the upcoming water shortages in various parts of world, especially urban areas. Anaerobic treatment of gray water in houses is an alternative low cost, low energy and low sludge generating option that can meet this challenge. Typical problems of fluctuating VFA, low pH and sludge washout at low loading rates with gray water feedstock was overcome in two chambered anaerobic biofilm reactors using natural fibers as the biofilm support. The long term performance of using natural fiber based biofilms at moderate and low organic loading rates (OLR) have been examined. Biofilms raised on natural fibers (coir, ridge-gourd) were similar to that of synthetic media (PVC, polyethylene) at lower OLR when operated in pulse fed mode without effluent recirculation and achieved 80-90% COD removal at HRT of 2 d showing a small variability during start-up. Confocal microscopy of the biofilms on natural fibers indicated thinner biofilms, dense cell architecture and low extra cellular polymeric substances (EPS) compared to synthetic supports and this is believed to be key factor in high performance at low OLR and low strength gray water. Natural fibers are thus shown to be an effective biofilm support that withstand fluctuating characteristic of domestic gray water. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI) proximal to an early replicating centromere (CEN7) in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR) proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-A(CaCse4) levels at centromeres, as determined by chromatin immunoprecipitation (ChIP) experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-A(CaCse4) in vivo. Thus, the HR proteins Rad51 and Rad52 epigenetically maintain centromere functioning by regulating CENP-A(CaCse4) levels at the programmed stall sites of early replicating centromeres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes, VO(acac)(L)Cl] (1), VO(cur)(L)Cl] (2), and VO(scur)(L)Cl] (3) {acac = acetylacetonate, cur = curcumin monoanion, scur = diglucosylcurcumin monoanion, L = 11-(9-acridinyl)dipyrido3, 2-a:2',3'-c]phenazine (acdppz)}, were prepared and characterized. The complexes are non-electrolytic in DMF and 1:1 electrolytic in aqueous DMF. The one-electron paramagnetic complexes showed a d-d band near 725 nm in aqueous DMF and green emission near 520 nm in aqueous DMSO. The complexes exhibited an irreversible V-IV/V-III redox response near -0.85 V versus SCE in aqueous DMF. The complexes showed good binding strengths to calf thymus DNA (K-b: 3.1x10(5)-9.6x10(5) M-1) and efficient pUC19 DNA photocleavage activity in red light of 705 and 785 nm by singlet oxygen (O-1(2)) pathway. Complexes 1 and 2 exhibited significant photocytotoxicity (IC50: 0.1-1.0 M) in visible light (400-700 nm) with low dark toxicity (IC50: >20 M) in HeLa and HaCaT cells. Complex 3 was cytotoxic in both light and dark. DNA ladder formation experiments indicated cell death via apoptotic pathway. Confocal microscopy done with 1 and 2 revealed primarily cytosolic localization of the complexes with significant presence of the complex in the mitochondria as evidenced from the imaging data using mitotracker red.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-(x wt pct Ti), (x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (similar to 36 GPa) and indentation fracture toughness (similar to 12 MPa m(1/2)). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in alpha-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s(-1). The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr-Coulomb theory is used to rationalize the measured strength properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid coated mesoporous silica nanoparticle (L-MSN) were synthesized for oral delivery of ciprofloxacin for intracellular elimination of Salmonella pathogen. The particle size was found to be between 50-100 nm with a lipid coat of approximately 5 nm thickness. The lipid coating was achieved by sonication of liposomes with the MSN particles and evaluated by CLSMand FTIR studies. The L-MSN particles exhibited lower cytotoxicity compared to bare MSN particles. Ciprofloxacin, a fluoroquinolone antibiotic, loaded into the L-MSN particles showed enhanced antibacterial activity against free drug in in vitro assays. The lipid coat was found to aid in intravacuolar targeting of the drug cargo as observed by confocal microscopy studies. We also observed that a lower dose of antibiotic was sufficient to clear the pathogen from mice and increase their survivability using the L-MSN oral delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we present cationic dimeric (gemini) lipids for significant plasmid DNA (pDNA) delivery to different cell lines without any marked toxicity in the presence of serum. Six gemini lipids based on alpha-tocopherol were synthesized, which differed in their spacer chain lengths. Each of these gemini lipids mixed with a helper lipid, 1,2-dioleoyl phosphatidyl ethanolamine (DOPE), was capable of forming stable aqueous suspensions. These co-liposomal systems were examined for their potential to transfect pEGFP-C3 plasmid DNA into nine cell lines of different origins. The transfection efficacies noticed in terms of EGFP expression levels using flow cytometry were well corroborated using independent fluorescence microscopy studies. Significant EGFP expression levels were reported using the gemini co-liposomes, which counted significantly better than one well known commercial formulation, Lipofectamine 2000 (L2 K). Transfection efficacies were also analyzed in terms of the degree of intracellular delivery of labeled plasmid DNA (pDNA) using confocal microscopy, which revealed an efficient internalization in the presence of serum. The cell viability assays performed using optimized formulations demonstrated no significant toxicity towards any of the cell lines used in the study. We also had a look at the lipoplex internalization pathway to profile the uptake characteristics. A caveolae/lipid raft route was attributed to their excellent gene transfection capabilities. The study was further advanced by using a therapeutic p53-EGFP-C3 plasmid and the apoptotic activity was observed using FACS and growth inhibition assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, we present the design and synthesis of new redox-active monomeric and dimeric (gemini) cationic lipids based on ferrocenylated cholesterol derivatives for gene delivery. The cationic cholesterols are shown to be transfection efficient after being formulated with the neutral helper lipid DOPE in the presence of serum (FBS). The redox activity of the resulting co-liposomes and their lipoplexes could be regulated using the alkanyl ferrocene moiety attached to the ammonium head groups of the cationic cholesterols. Atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential measurements were performed to characterize the co-liposomal aggregates and their complexes with pDNA. The transfection efficiency of lipoplexes could be tuned by changing the oxidation state of the ferrocene moiety. The gene transfection capability was assayed in terms of green fluorescence protein (GFP) expression using pEGFP-C3 plasmid DNA in three cell lines of different origins, namely Caco-2, HEK293T and HeLa, in the presence of serum. The vesicles possessing ferrocene in the reduced state induced an efficient transfection, even better than a commercial reagent Lipofectamine 2000 (Lipo 2000) as evidenced by flow cytometry and fluorescence microscopy. All the co-liposomes containing the oxidized ferrocene displayed diminished levels of gene expression. Gene transfection events from the oxidized co-liposomes were further potentiated by introducing ascorbic acid (AA) as a reducing agent during lipoplex incubation with cells, leading to the resumption of transfection activity. Assessment of transfection capability of both reduced and oxidized co-liposomes was also undertaken following cellular internalization of labelled pDNA using confocal microscopy and flow cytometry. Overall, we demonstrate here controlled gene transfection activities using redox-driven, transfection efficient cationic monomeric and dimeric cholesterol lipids. Such systems could be used in gene delivery applications where transfection needs to be performed spatially or temporally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of small amount of boron to Ti and it alloys refines the as-cast microstructure and enhances the mechanical properties. In this paper, we employ nanoindentation on each of the constituent phases in the microstructure and `rule-of-mixture' type analysis to examine their relative contributions to the strength enhancement in a Ti-6Al-4V alloy modified with 0.3 wt% B. Our results indicate to two main contributors to the relatively higher flow strength of B-modified alloy vis-a-vis the base alloy: (a) strengthening of alpha phase due to the reduction in the effective slip length that occurs as a result of the microstructural refinement that occurs upon B addition, and (b) composite strengthening caused by the TiB whiskers present in the alloy. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using in situ, high-speed imaging of a hard wedge sliding against pure aluminum, and image analysis by particle image velocimetry, the deformation field in sliding is mapped at high resolution. This model system is representative of asperity contacts on engineered surfaces and die-workpiece contacts in deformation and machining processes. It is shown that large, uniform plastic strains of 1-5 can be imposed at the Al surface, up to depths of 500 mu m, under suitable sliding conditions. The spatial strain and strain rate distributions are significantly influenced by the initial deformation state of the Al, e.g., extent of work hardening, and sliding incidence angle. Uniform straining occurs only under conditions of steady laminar flow in the metal. Large pre-strains and higher sliding angles promote breakdown in laminar flow due to surface fold formation or flow localization in the form of shear bands, thus imposing limits on uniform straining by sliding. Avoidance of unsteady sliding conditions, and selection of parameters like sliding angle, thus provides a way to control the deformation field. Key characteristics of the sliding deformation such as strain and strain rate, laminar flow, folding and prow formation are well predicted by finite element simulation. The deformation field provides a quantitative basis for interpreting wear particle formation. Implications for engineering functionally graded surfaces, sliding wear and ductile failure in metals are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.