996 resultados para Saturation cérébrale
Resumo:
Aim: To investigate and understand patient's satisfaction with nursing care in the intensive care unit to identify the dimensions of the concept of"satisfaction" from the patient's point of view. To design and validate a questionnaire that measures satisfaction levels in critical patients. Background: There are many instruments capable of measuring satisfaction with nursing care; however, they do not address the reality for critical patients nor are they applicable in our context. Design: A dual approach study comprising: a qualitative phase employing Grounded Theory and a quantitative and descriptive phase to prepare and validate the questionnaire. Methods: Data collection in the qualitative phase will consist of: in-depth interview after theoretical sampling, on-site diary and expert discussion group. The sample size will depend on the expected theoretical saturation n = 27-36. Analysis will be based on Grounded Theory. For the quantitative phase, the sampling will be based on convenience (n = 200). A questionnaire will be designed on the basis of qualitative data. Descriptive and inferential statistics will be used. The validation will be developed on the basis of the validity of the content, the criteria of the construct and reliability of the instrument by the Cronbach's alpha and test-retest approach. Approval date for this protocol was November 2010. Discussion: Self-perceptions, beliefs, experiences, demographic, socio-cultural epistemological and political factors are determinants for satisfaction, and these should be taken into account when compiling a questionnaire on satisfaction with nursing care among critical patients.
Resumo:
The objective of this paper was to evaluate the modifications in milkfat properties with the addition of sunflower oil (SO) and phytosterol esters (PE) and chemical interesterification. Fatty acid composition, softening point and consistency were determined. The saturation degree of milkfat decreased with the addition of SO and PE. Consequently, milkfat presented lower softening point and consistency. Chemical interesterification caused an increase in softening point due to the formation of higher amounts of trissaturated triacylglycerols with rearrangement. The incorporation of unsaturated fatty acids from SO and PE by milkfat triacylglycerols after chemical reaction caused linearization of consistency curves.
Resumo:
The decolorization of acid orange 7 azo dye by photolysis and photocatalysis by ZnO was investigated in the presence of oxidants such as NaClO3, NaBrO3, NaIO4, and K2S2O8 in an open reactor at 30 ºC. The decolorization was relatively fast at lower oxidants concentrations and slow rate at larger concentrations, except for persulfate in the photocatalysis. Concerning photolysis the rate constant enhanced gradually, except for chlorate, outreaching the obtained values by photocatalysis, at higher concentrations. The air saturation decreased the rate constant in both processes and indicated that the azo dye can be decolorized without dissolved oxygen in persulfate medium.
Resumo:
Mixtures of ethyl(hydroxyethyl)cellulose (EHEC) and Sodium Dodecyl Sulfate (SDS) were investigated using surface tension, conductivity and viscosity measurements in aqueous solutions. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration (cac) and saturation of the polymer by SDS (psp) were determined from the plots of surface tension and specific conductivity versus surfactant concentration. Through the final results we see that there was no specific link of polymer with the surfactant, implying therefore a phenomenon of only cooperative association.
pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method
Resumo:
This work aimed at putting in evidence the influence of the pH on the chemical nature and properties of the synthesized magnetic nanocomposites. Saturation magnetization measurements evidenced a marked difference of the magnetic behavior of samples, depending on the final pH of the solution after reaction. Magnetite and maghemite in different proportions were the main magnetic iron oxides actually identified. Synthesis with final pH between 9.7-10.6 produced nearly pure magnetite with little or no other associated iron oxide. Under other synthetic conditions, goethite also appears in proportions that depended upon the pH of the synthesis medium.
Resumo:
Multiresidue methods for pesticides monitoring by GC are commonly employed, however, it is well known that the presence of compounds of the matrix introduces errors during the quantiûcation. The main consequence of matrix effect is an increasing or decreasing analyte signal after the GC saturation with extracts of matrix. In this paper, the influence of constituents of nine matrices on the quantification of the four pesticides by GC-ECD was studied. Variation of signal was evaluated by PCA and HCA, and results showed that the constituents of tomato increased the signal (until 300%), while extracts of apple decreased (until -20%). Variation the analyte signal in the presence of the matrix in respect to the same analyte in solvent (standard solution) also was observed, mainly for liver extract (until 270%).
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.
Resumo:
In this work, the interactions between the non-ionic polymer of ethyl(hydroxyethyl)cellulose (EHEC) and mixed anionic surfactant sodium dodecanoate (SDoD)-sodium decanoate (SDeC) in aqueous media, at pH 9.2 (20 mM borate/NaOH buffer) were investigated by electric conductivity and light transmittance measurements at 25 ºC. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration and saturation of the polymer by surfactants were determined from plots of specific conductivity vs total surfactant concentration, [surfactant]tot = [SDoD] + [SDeC]. Through the results was not observed a specific link of polymer with the surfactant, implying therefore a phenomenon only cooperative association.
Resumo:
The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.
Assessment of hydrochemical quality of ground water under some urban areas within sana'a secreteriat
Resumo:
Groundwater from nine wells of three different districts, located at Sana'a secretariat was analyzed for hydrochemical quality assessment. Measurements of water quality parameters including pH, EC, CO3(2-), HCO3-, Cl-, NO3-, SO4(2-), Ca2+, Mg2+, Fe3+, K+, and Na+ were carried out . Classification of the groundwater samples according to Cl, SO4(2-), CO3(2-) and HCO3-, hardness (H), total dissolved solids (TDS), base-exchange, and meteoric genesis was demonstrated. Suitability of ground water samples for irrigation and industrial uses according to sodium adsorption ration (SAR), ratio of dissolved sodium (RDS), residual sodium carbonate (RSC) and saturation index (SI) was also investigated. The results of this study showed that almost all ground water samples were of good quality that makes them suitable for drinking and domestic uses. Results also indicated that even though some of the ground water samples were suitable for irrigation purposes, almost all of them were found not be good for industrial uses. Despite all drawbacks of the sewerage system built around Sana'a secretariat at the beginning of the first decade of the third millennium, the results of this study indicate that there is scope of significant improvement in Sana'a secretariat ground water quality.
Resumo:
Keskitaajuudella toimivia muuntajia käytetään laajalti tehoelektroniikkasovelluksissa kuten DC/DC-konverttereissa ja muissa hakkuriteholähteissä. Muuntaja on induktiivinen komponentti, jonka magneettisen tasapainon säilyttäminen hakkuriteholähteissä on laitteen virheettömän toiminnan kannalta tärkeää. Muuntajaa syöttävän virtapiirin on muodostettava symmetrinen syöttöjännite, jotta muuntajan vuo ei ajaudu positiiviseen tai negatiiviseen kyllästykseen. Tässä diplomityössä esitetään muuntajan sähkömagneettinen toimintaperiaate, kyllästymisen syyt hakkuriteholähteissä sekä kehitetään aktiivinen ohjaus vuotasapainon säilyttämiseksi. Hakkuriteholähteissä käytettävissä muuntajissa on monesti useampi kuin kaksi käämiä. Tässä työssä tutkittavassa muuntajassa on useita ensiöitä ja useita toisioita ja muuntajaa syötetään keskitaajuudella. Tämä tuo uusia ongelmia verrattuna perinteiseen yksivaiheiseen DC/DC-konvertteriin. Näihin ongelmiin esitetään ratkaisut diplomityön tutkimuksessa.
Resumo:
The work reported in this thesis is dedicated to irreversible magnetic properties in pyrolytic nanocarbon samples. Based on atomic force microscope images, the samples consist of carbon clusters with radius 30..120 nm. These are treated as single-domain nanoparticles. Magnetic hysteresis, field cooled, zero field cooled and thermoremanent magnetization measurements were performed using an RF SQUID magnetometer and ferromagnetic behaviour was observed. Analysis suggests that the ferromagnetic ordering is associated with defects in a thin surface layer, whose thickness is independent of particle size. Critical radius for single-domain particles, critical radius for coherent rotation, magnetic layer thickness, distance between elementary magnetic moments, saturation magnetization, exchange stiffness constant and anisotropy energy density are also presented.
Resumo:
Seasonally inundated native forest fragments ("ipucas") located in natural landform depression swales of the Araguaian Plain are currently under land use pressure. Their composition needs to be better understood to guarantee their protection. This comparative study of fragments under different land use conditions was carried out at Lago Verde Farm, Lagoa da Confusão,Tocantins, Brazil. The location coordinates are UTM 643586 and 644060 East and 8792795 and 8799167 North. This study aimed to first analyze and compare the floristic composition of two seasonally inundated forest fragments of approximately one hectare each. The first is located in an intact (without human intervention) Gramineous-Woody Savanna region and the second in a rice cultivation region. The floristic composition of both fragments was then compared to that of other wetland forests located in the Northern, Central Western and Southeastern regions of Brazil.All the floristic compositions are affected by seasonal flooding and soil water saturation. The floristic inventory used a census method that sampled all trees and shrubs with perimeter at 1.30 m from soil (PAP) = 15cm; 665 individuals, 33 families and 49 species were recorded for the intact region and 807 individuals, 35 families and 70 species for the altered region fragment. The values of H' = 0.806 (Shannon-Weaver) and J = 3.44 nats /individual (equability) for the fragment in the region affected by rice cultivation are considered high compared to the intact region fragment values (H' = 0.761 and J = 2.97). Families contributing to floristic richness in the altered region fragment were Fabaceae (9 species), Vochysiaceae (6) and Annonaceae (4). In the intact region fragment, Fabaceae also presented the largest number of species (8) followed by Arecaceae, Chrysobalanaceae and Vochysiaceae (3 each). When comparing the forests from various regions in Brazil, floristic similarity was found to be small. Greater similarity was found when indices for the two Lagoa da Confusão fragments were compared to riparian forests located in the Federal District of Brasilia.
Resumo:
Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.
Resumo:
This study was conducted to evaluate the decomposition kinetics of gaseous ozone in peanut grains. This evaluation was made with 1-kg peanut samples, moisture contents being 7.1 and 10.5% wet basis (w.b.), placed in 3-liter glass containers. The peanut grains were ozonated at the concentration of 450 µg L-1, at 25 and 35 ºC, with gas flow rates of 1.0 and 3.0 L min-1. Time of saturation was determined by quantifying the residual concentration of ozone after the gas passed through the grains to constant mass. The decomposition kinetics of ozone was evaluated after the grain mass was ozone-saturated. For the peanut grains whose moisture content was 7.1% (w.b.), at 25 and 35ºC and with flow rates of 1.0 and 3.0 L min-1, the values obtained for time of saturation of gaseous ozone ranged between 173 and 192 min; the concentration of saturation was approximately 260 µg L-1. For the grains whose moisture content was 10.5% (w.b.), a higher residual concentration of gaseous ozone was obtained at 25 ºC, that of 190 µg L-1. As regards the half-life of ozone, the highest value obtained was equivalent to 7.7 min for grains ozonated at 25 ºC, while for those with moisture content of 10.5% at 35 ºC, half-life was 3.2 min. In the process of ozone decomposition in peanut grains, temperature was concluded to be the key factor. An increase of 10 ºC in the temperature of the grains results in a decrease of at least 43% in the half-life of ozone.