978 resultados para SULFIDE GLASSES
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
PbO-BiO 1.5-GaO 1.5-based glasses are good candidates for optical applications, because of some of their interesting characteristics, such as high refraction indices and high transmission in the ultraviolet (UV), visible (VIS), and infrared (IR) regions. A limited stage in the processing of these glasses is the corrosion that is caused by the melt in all currently used conventional crucibles, such as noble metals (platinum or gold) and Al 2O 3. The absorption of crucible material by the glass composition may reduce the transmission level, the cutoff in the UV-VIS, and IR regions, and the thermal stability. In this study, a SnO 2 crucible has been tested for PbO-BiO 1.5-GaO 1.5 molten glass. Optical and thermal analyses show, in some cases, advantages over the use of platinum and Al 2O 3 crucibles. A visible cutoff value of 474 nm has been measured, and a longer melting time (850°C for 4 h) results in a significant reduction of the O-H absorption band at 3.2 μm.
Resumo:
IR-visible upconversion fluorescence spectroscopy and thermal effects in pr(3+)/Yb3+-codoped Ga2O3:La2S3 chalcogenide glasses excited at 1.064 mum is reported. Intense visible upconversion emission in the wavelength region of 480-680 nm peaked around 500, 550, 620 and 660 nm is observed. Upconversion excitation of the Pr3+ excited-state visible emitting levels is achieved by st combination of phonon-assisted absorption, energy-transfer and phonon-assisted excited-state absorption processes. A threefold upconversion emission enhancement induced by thermal effects when the codoped sample was heated in the temperature range of 20-200 degreesC is demonstrated. The thermal-induced enhancement is attributed to a multiphonon-assisted anti-Stokes process which takes place in the excitation of the ytterbium and excited-state absorption of the praseodymium. The thermal effect is modelled by conventional rate equations considering temperature-dependent effective absorption cross-sections for the F-2(7/2)-F-2(5/2) ytterbium transition and (1)G(4)-P-3(0) praseadymium excited-state absorption, and it is shown to agree very well with experimental results. Frequency upconversion in singly Pr3+-doped samples pumped at 836 nm and 1.064 mum in a two-beam configuration is also examined.
Resumo:
Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.
Resumo:
A series of heavy metal oxide (HMO) glasses with composition 26.66B(2)O(3)-16GeO(2)-4 Bi2O3-(53.33-x)PbO-xPbF2 (0 <= x <= 40) were prepared and characterized with respect to their bulk (glass transition and crystallization temperatures, densities, molar volumes) and spectroscopic properties. Homogeneous glasses are formed up to x = 30, while crystallization of beta-PbF2 takes place at higher contents. Substitution of PbO by PbF2 shifts the optical band gap toward higher energies, thereby extending the UV transmission window significantly toward higher frequencies. Raman and infrared absorption spectra can be interpreted in conjunction with published reference data. Using B-11 and F-19 high-resolution solid state NMR as well as B-11/F-19 double resonance methodologies, we develop a quantitative structural description of this material. The fraction of four-coordinate boron is found to be moderately higher compared to that in glasses with the same PbO/B2O3 ratios, suggesting some participation of PbF2 in the network transformation process. This suggestion is confirmed by the F-19 NMR spectra. While the majority of the fluoride ions is present as ionic fluoride, similar to 20% of the fluorine inventory acts as a network modifier, resulting in the formation of four-coordinate BO3/2F- units. These units can be identified by F-19{B-11} rotational echo double resonance and B-11{F-19} cross-polarization magic angle spinning (CPMAS) data. These results provide the first unambiguous evidence of B-F bonding in a PbF2-modified glass system. The majority of the fluoride ions are found in a lead-dominated environment. F-19-F-19 homonuclear dipolar second moments measured by spin echo decay spectroscopy are quantitatively consistent with a model in which these ions are randomly distributed within the network modifier subdomain consisting of PbO, Bi2O3, and PbF2. This model, which implies both the features of atomic scale mixing with the network former borate species and some degree of fluoride ion clustering is consistent with all of the experimental data obtained on these glasses.
Resumo:
We have shown the possibility of operation by the piezooptical response of PbO-GeO2 glasses doped with rare earth ions and silver nanoparticles by illumination of double frequency CO2 nanosecond laser. Substantial influence of thermoannealing on the output photoinduced elastooptical susceptibilities was established. The effect is very sensitive to temperature and to the corresponding tensor components. The effect of thermoannealing leads to enhanced long-range ordering with the occurrence of corresponding trapping levels within the forbidden gaps. The discovered effects may be used for creation of low-temperature IR laser triggers.
Resumo:
We report the first observation of photoluminescence enhancement in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of approximate to 200% in the intensity of the Er3+ transition S-4(3/2) -> I-4(15/2) (545 nm) and of approximate to 100% for transitions H-2(11/2) -> I-4(15/2) (525 nm), F-4(9/2) -> I-4(15/2) (660 nm), and I-4(5/2) -> I-4(13/2) (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.
Resumo:
Frequency upconversion (UC) properties of Tm3+ doped TeO2-ZnO glasses containing silver nanoparticles (NPs) were investigated. Infrared-to-visible and infrared-to-infrared UC processes associated to the Tm3+ ions were studied by exciting the samples with a cw 1050 nm ytterbium laser. The luminescence intensity as a function of laser intensity was also measured using a pulsed 1047 nm Nd3+:YVO laser in order to determine the number of photons participating in the UC processes. Enhancement of the UC signals for samples heat-treated during various time intervals is attributed to the growth of the local field in the vicinity of the NPs. PL enhancement by one-order of magnitude was observed in the whole spectrum of the samples heat-treated during 48 h. On the other hand PL quenching was observed for the samples heat-treated more than 48 h. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report a systematic study of the localized surface plasmon resonance effects on the photoluminescence of Er3+-doped tellurite glasses containing Silver or Gold nanoparticles. The Silver and Gold nanoparticles are obtained by means of reduction of Ag ions (Ag+ -> Ag-0) or Au ions (Au3+ -> Au-0) during the melting process followed by the formation of nanoparticles by heat treatment of the glasses. Absorption and photoluminescence spectra reveal particular features of the interaction between the metallic nanoparticles and Er3+ ions. The photoluminescence enhancement observed is due to dipole coupling of Silver nanoparticles with the I-4(13/2) -> I-4(15/2) Er3+ transition and Gold nanoparticles with the H-2(11/2)-> I-4(13/2) (805 nm) and S-4(3/2) -> I-4(13/2) (840 nm) Er3+ transitions. Such process is achieved via an efficient coupling yielding an energy transfer from the nanoparticles to the Er3+ ions, which is confirmed from the theoretical spectra calculated through the decay rate. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
Two structural properties in mixed alkali metal phosphate glasses that seem to be crucial to the development of the mixed ion effect in dc conductivity were systematically analyzed in Na mixed metaphosphates: the local order around the mobile species, and their distribution and mixing in the glass network. The set of glasses considered here, Na1-xMxPO3 with M = Li, Ag, K, Rb, and Cs and 0 <= x <= 1, encompass a broad degree of size mismatch between the mixed cation species. A comprehensive solid-state nuclear magnetic resonance study was carried out using P-31 MAS, Na-23 triple quantum MAS, Rb-87 QCPMG, P-31-Na-23 REDOR, Na-23-Li-7 and Li-7-Li-6 SEDOR, and Na-23 spin echo decay. It was observed that the arrangement of P atoms around Na in the mixed glasses was indistinguishable from that observed in the NaPO3 glass. However, systematic distortions in the local structure of the 0 environments around Na were observed, related to the presence of the second cation. The average Na-O distances show an expansion/compression When Na+ ions are replaced by cations with respectively smaller/bigger radii. The behavior of the nuclear electric quadrupole coupling. constants indicates that this expansion reduces the local symmetry, while the compression produces the opposite effect These effects become marginally small when the site mismatch between the cations is small, as in Na-Ag mixed glasses. The present study confirms the intimate mixing of cation species at the atomic scale, but clear deviations from random mixing were detected in systems with larger alkali metal ions (Cs-Na, K-Na, Rb-Na). In contrast, no deviations from the statistical ion mixture were found in the systems Ag-Na and Li-Na, where mixed cations are either of radii comparable to (Ag+) or smaller than (Li+) Na+. The set of results supports two fundamental structural features of the models proposed to explain the mixed ion effect: the. structural specificity of the sites occupied by each cation species and their mixing at the atomic scale.
Resumo:
We have studied the influence of SiO2 content on the spectroscopic properties and laser emission efficiency of Yb3+-Er3+ co-doped calcium aluminosilicate glasses. An increase in SiO2 content resulted in higher phonon energy, which reduced the up-conversion emission, enhanced the energy transfer efficiency up to 70 % from Yb3+ to Er3+, and enhanced the optical quality. All these results led to an increase from 20 to 30 % in the laser emission efficiency.
Resumo:
The influence of silver nanoparticles (NPs) on the frequency upconversion luminescence in Er3+ doped TeO2-WO3-Bi2O3 glasses is reported. The effect of the NPs on the Er3+ luminescence was controlled by appropriate heat-treatment of the samples. Enhancement up to 700% was obtained for the upconverted emissions at 527, 550, and 660 nm, when a laser at 980 nm is used for excitation. Since the laser frequency is far from the NPs surface plasmon resonance frequency, the luminescence enhancement is attributed to the local field increase in the proximity of the NPs and not to energy transfer from the NPs to the emitters as is usually reported. This is the first time that the effect is investigated for tellurite-tungstate-bismutate glasses and the enhancement observed is the largest reported for a tellurium oxide based glass. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754468]