995 resultados para STARS: EVOLUTION
Resumo:
China has a large land area with highly diverse topography, climate and vegetation, and animal resources and is ranked eighth in the world and first in the Northern Hemisphere on richness of biodiversity. Even though little work on molecular evolution had
Resumo:
Previous studies have proposed that selection has been involved in the differentiation of human mitochondrial DNA (mtDNA) and climate was the main driving force. This viewpoint, however, gets no support from the subsequent studies and remains controversia
Resumo:
Background: Many conserved secondary structures have been identified within conserved elements in the human genome, but only a small fraction of them are known to be functional RNAs. The evolutionary variations of these conserved secondary structures in h
Resumo:
Mustelidae is the largest and most diverse family in the order Carnivora. The phylogenetic relationships among the subfamilies have especially long been a focus of study. Herein we are among the first to employ two new introns (4 and 7) of the nuclear P-f
Resumo:
Background: Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and
Resumo:
Evidence of incongruence between mitochondrial and nuclear gene trees is now becoming documented with increasing frequency. Among the Old World monkeys, this discordance has been well demonstrated in the Cercopithecinae, but has not yet been investigated
Resumo:
The phylogenetic relationships among 12 genera of treefrogs (Family, Rhacophoridae), were investigated based on a large sequence data set, including five nuclear (brain-derived neurotrophic factor, proopiomelanocortin, recombination activating gene 1, tyr
Resumo:
The trypsin-like serine protease (Tryp_SPc) family is ubiquitous in animals and plays diverse roles, especially in the digestive system, in different phyla. In the mosquito, some Tryp_SPc proteases make important contributions to the digestion of the bloo
Resumo:
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.
Resumo:
Motilin and ghrelin, members of a structure-function-related hormone family, play important roles in gastrointestinal function, regulation of energy homeostasis and growth hormone secretion. We observed episodic evolution in both of their prehormone gene sequences during primitive placental mammal evolution, during which most of the nonsynonymous changes result in radical substitution. Of note, a functional obestatin hormone might have only originated after this episodic evolution event. Early in placental mammal evolution, a series of biology complexities evolved. At the same time the motilin and ghrelin prehormone genes, which play important roles in several of these processes, experienced episodic evolution with dramatic changes in their coding sequences. These observations suggest that some of the lineage-specific physiological adaptations are due to episodic evolution of the motilin and ghrelin genes.
Resumo:
Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.
Resumo:
Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.
Resumo:
Pancreatic RNase genes implicated in the adaptation of the colobine monkeys to leaf eating have long intrigued evolutionary biologists since the identification of a duplicated RNASE1 gene with enhanced digestive efficiencies in Pygathrix nemaeus. The recent emergence of two contrasting hypotheses, that is, independent duplication and one-duplication event hypotheses, make it into focus again. Current understanding of Colobine RNASE1 gene evolution of colobine monkeys largely depends on the analyses of few colobine species. The present study with more intensive taxonomic and character sampling not only provides a clearer picture of Colobine RNASE1 gene evolution but also allows to have a more thorough understanding about the molecular basis underlying the adaptation of Colobinae to the unique leaf-feeding lifestyle. The present broader and detailed phylogenetic analyses yielded two important findings: 1) All trees based on the analyses of coding, noncoding, and both regions provided consistent evidence, indicating RNASE1 duplication occurred after Asian and African colobines speciation, that is, independent duplication hypothesis; 2) No obvious evidence of gene conversion in RNASE1 gene was found, favoring independent evolution of Colobine RNASE1 gene duplicates. The conclusion drawn from previous studies that gene conversion has played a significant role in the evolution of Colobine RNASE1 was not supported. Our selective constraint analyses also provided interesting insights, with significant evidence of positive selection detected on ancestor lineages leading to duplicated gene copies. The identification of a handful of new adaptive sites and amino acid changes that have not been characterized previously also provide a necessary foundation for further experimental investigations of RNASE1 functional evolution in Colobinae.
Resumo:
The phylogenetic relationship of several subspecies of Ovis ammon were analyzed by comparing DNA sequences within the entire mitochondrial D-loop region. Five putative subspecies of ammon (dalai-lamae, darwini, hodgsoni, sairensis and adamerzi) were sampled from four provinces in China [Xinjiang, Qinghai, Gansu and Xizang (Tibet)] and two (servertzovi and nigrimontana) from Uzbekistan. The argalis sampled represent most of the currently recognized putative Subspecies of argali. Analysis of mtDNA sequences revealed high variability within ammon (7.7%), ranging from 2.4 to 11.5%. MaxiMUM-Parsimony tree indicated that nigrimontana from Uzbekistan diverged First, followed by severtzovi from Uzbekistan. The dispersal of argalis into China gave rise to three clades, suggesting that the argali originated in Western Asia and then dispersed throughout the central Asian highlands on a southeastward course. Among the Chinese argalis, mtDNA analysis places dalailamae genetically closer to hodgsoni than to darwini. Severtzovi and.. nigrimontana are two separate subspecies and genetically distinct from the Chinese argali.