923 resultados para SPATIAL GENETIC-STRUCTURE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis suggests to carry on the philosophical work begun in Casati's and Varzi's seminal book Parts and Places, by extending their general reflections on the basic formal structure of spatial representation beyond mereotopology and absolute location to the question of perspectives and perspective-dependent spatial relations. We show how, on the basis of a conceptual analysis of such notions as perspective and direction, a mereotopological theory with convexity can express perspectival spatial relations in a strictly qualitative framework. We start by introducing a particular mereotopological theory, AKGEMT, and argue that it constitutes an adequate core for a theory of spatial relations. Two features of AKGEMT are of particular importance: AKGEMT is an extensional mereotopology, implying that sameness of proper parts is a sufficient and necessary condition for identity, and it allows for (lower- dimensional) boundary elements in its domain of quantification. We then discuss an extension of AKGEMT, AKGEMTS, which results from the addition of a binary segment operator whose interpretation is that of a straight line segment between mereotopological points. Based on existing axiom systems in standard point-set topology, we propose an axiomatic characterisation of the segment operator and show that it is strong enough to sustain complex properties of a convexity predicate and a convex hull operator. We compare our segment-based characterisation of the convex hull to Cohn et al.'s axioms for the convex hull operator, arguing that our notion of convexity is significantly stronger. The discussion of AKGEMTS defines the background theory of spatial representation on which the developments in the second part of this thesis are built. The second part deals with perspectival spatial relations in two-dimensional space, i.e., such relations as those expressed by 'in front of, 'behind', 'to the left/right of, etc., and develops a qualitative formalism for perspectival relations within the framework of AKGEMTS. Two main claims are defended in part 2: That perspectival relations in two-dimensional space are four- place relations of the kind R(x, y, z, w), to be read as x is i?-related to y as z looks at w; and that these four-place structures can be satisfactorily expressed within the qualitative theory AKGEMTS. To defend these two claims, we start by arguing for a unified account of perspectival relations, thus rejecting the traditional distinction between 'relative' and 'intrinsic' perspectival relations. We present a formal theory of perspectival relations in the framework of AKGEMTS, deploying the idea that perspectival relations in two-dimensional space are four-place relations, having a locational and a perspectival part and show how this four-place structure leads to a unified framework of perspectival relations. Finally, we present a philosophical motivation to the idea that perspectival relations are four-place, cashing out the thesis that perspectives are vectorial properties and argue that vectorial properties are relations between spatial entities. Using Fine's notion of "qua objects" for an analysis of points of view, we show at last how our four-place approach to perspectival relations compares to more traditional understandings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Inflammation has been implicated as an etiological factor in several human cancers, including prostate cancer. Allelic variants of the genes involved in inflammatory pathways are logical candidates as genetic determinants of prostate cancer risk. The purpose of this study was to investigate whether single nucleotide polymorphisms of genes that lead to increased levels of pro-inflammatory cytokines and chemokines are associated with an increased prostate cancer risk. METHODS A case-control study design was used to test the association between prostate cancer risk and the polymorphisms TNF-A-308 A/G (rs 1800629), RANTES-403 G/A (rs 2107538), IL1-A-889 C/T (rs 1800587) and MCP-1 2518 G/A (rs 1024611) in 296 patients diagnosed with prostate cancer and in 311 healthy controls from the same area. RESULTS Diagnosis of prostate cancer was significantly associated with TNF-A GA + AA genotype (OR, 1.61; 95% CI, 1.09-2.64) and RANTES GA + AA genotype (OR, 1.44; 95% CI, 1.09-2.38). A alleles in TNF-A and RANTES influenced prostate cancer susceptibility and acted independently of each other in these subjects. No epistatic effect was found for the combination of different polymorphisms studied. Finally, no overall association was found between prostate cancer risk and IL1-A or MCP-1 polymorphisms. CONCLUSION Our results and previously published findings on genes associated with innate immunity support the hypothesis that polymorphisms in proinflammatory genes may be important in prostate cancer development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vascular plants, the endodermis establishes a protective diffusion barrier surrounding the vasculature preventing the passive, uncontrolled entry of nutrients absorbed by the plant. It does so by means of a differentiation feature, the "Casparian Strip" (CS), a highly localized cell wall impregnation made of lignin, which seals the extracellular space. Although the existence of this differentiation feature has been intensively described, the mechanisms establishing this hallmark remain obscure. In this work I report, the developmental sequence of events that leads to a differentiated endodermis, in the plant model Arabidopsis thaliana. In addition, my descriptive approach gave important insights as to how these cells define membrane domains involved in the directional transport of nutrients. I also participated in characterizing a new transmembrane protein family, the CASPs, localized to the membrane domain underlying the CS, which we accordingly named the Casparian Strip membrane Domain (CSD). Our molecular analysis indicates that these proteins drive CS establishment. To identify more molecular factors of CS establishment, I performed a forward genetic screen. This screen led to the identification of 11 endodermis permissive mutants, which we named schengen (sgn) mutants. The causative mutations have been mapped to 5 independent loci: SGN1 to SGN5. SGN1 and SGN3 encode Receptor Like Kinases involved in the correct establishment of the CSD. A lack of those kinases leads to an incomplete CSD, which gives rise to interrupted CS barriers. Interestingly, SGN1 seems to also regulate CSD positioning to the middle of endodermal transversal walls. SGN4 encodes an NADPH oxidase involved in lignin polymerization essential for CS formation. The sgn5 mutant induces extra divisions of cortical cells strongly affecting the cell identity, but also leading to incorrect differentiation. A thorough characterization of the sgn2 mutant will follow elsewhere, yet preliminary results indicate that SGN2 encodes an Acyl-CoA N-acyltransferase. . In summary, with my work I have contributed a first set of molecular players of Casparian strip formation and initiated their characterization. Eventually, this might lead to an understanding of the molecular mechanisms of CS establishment in A.thaliana . This in turn will hopefully help to better understand nutrient uptake in higher plants and their response to environmental stresses. - Au sein des plantes vasculaires, l'endoderme représente un tissu protecteur mettant en place une barrière imperméable, empêchant n'importe quel élément de rejoindre les tissus conducteurs par simple diffusion. Cette barrière, appelée « Cadre de Caspary », correspond à une lignification de la paroi de l'endoderme et donne lieu à un cloisonnement de l'espace intercellulaire. Bien que cet élément de différenciation soit décrit en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements aboutissant à l'établissement du cadre de Caspary chez la plante modèle Arabidopsis thaliana. De plus, ce travail apporte de nouvelles connaissances expliquant comment ces cellules définissent des domaines membranaires importants pour le transport des nutriments. Nous décrivons une nouvelle famille de protéines membranaires, les CASPs (« CAparian Strip membrane domain Proteins »), localisées dans un domaine membranaire longeant le cadre de Caspary : le domaine de Caspary (CSD). L'analyse moléculaire des CASPs indique qu'elles dirigent la formation du cadre de Caspary. Par ailleurs, une approche génétique directe nous a permis d'identifier 11 mutants ayant un endoderme perméable. Nous avons nommé ces mutants Schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) qui participent à la délimitation du CSD. L'absence de ces kinases aboutit à un domaine CSD incomplet, se traduisant par un cadre de Caspary discontinu. De plus, SGN1 semble réguler le positionnement du CSD au milieu de la paroi transversale de l'endoderme. SGN4 produit une enzyme de type NADPH oxydase impliquée dans la polymérisation du cadre de Caspary. Dans le mutant sgn5, on observe une division anormale des cellules du cortex créant ainsi une nouvelle couche cellulaire incapable d'achever sa différenciation en endoderme. Quant à la mutation sgn2, bien que nous pensons qu'elle affecte une Acyl-CoA N-acyltransferase, sa caractérisation ne sera réalisée que prochainement. Au final, ce travail procure de nouveaux éléments sur l'établissement du cadre de Caspary qui pourraient être importants afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles. - De par leur immobilité, les plantes terrestres n'ont pas d'autre choix que de puiser leurs ressources dans leur environnement direct. La plante extrait du sol les nutriments qui lui sont nécessaires et les redistribue grâce à des tissus conducteurs. Afin de ne pas s'intoxiquer, il est donc essentiel de pouvoir sélectionner les éléments entrant dans la racine. Etonnement, ce n'est pas la surface des racines qui permet ce contrôle mais un tissu interne appelé endoderme. Ce dernier forme une barrière imperméable qui entoure chaque cellule et crée une jointure permettant de bloquer le passage des éléments entre les cellules. Cette structure, appelée « cadre de Caspary », oblige les éléments à entrer dans les cellules de l'endoderme et à être ainsi sélectionnés. Bien que cette structure soit décrite en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements qui aboutit à la formation du cadre de Caspary chez la plante modèle Arabidopsis thaliana. Ce travail apporte également de nouvelles connaissances expliquant comment ces cellules définissent, organisent et dirigent le transport des nutriments. Nous décrivons comment certains éléments de la cellule, les protéines CASPs (CAsparian Strip membrane domain Proteins), sont organisées un domaine particulier des membranes afin de créer une plateforme de construction longeant le cadre de Caspary : le domaine de Caspary (CSD). Afin de déterminer ce qu'il se passerait si une plante ne possédait pas de cadre de Caspary, nous avons réalisé une mutagénèse, ou approche génétique directe, et identifié 11 mutants (individu ayant un gène défectueux conduisant à la perte d'une fonction) ayant un endoderme perméable. Nous avons nommé ces mutants schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. Les gènes SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) servant à l'établissement de la plateforme de construction. L'absence de ces kinases aboutit à une base incomplète, se traduisant par un cadre de Caspary discontinu. Qui plus est, la kinase SGN1 semble réguler le positionnement de la plateforme au milieu de l'endoderme. Le gène SGN4 est par contre, impliqué dans la construction à proprement dite du cadre de Caspary. Dans le mutant sgn5, on observe une nouvelle couche de cellules ressemblant à de l'endoderme mais incapable de former correctement une barrière identique au cadre de Caspary. Quant au dernier mutant, sgn2, bien que cette étude fournisse des indices permettant de comprendre pourquoi le mutant sgn2 est défectueux, nous n'expliquerons ce cas que prochainement. En résumé, ce travail procure de nouvelles connaissances sur l'établissement du cadre de Caspary qui pourraient être importantes afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variation among natural populations of Culex (Culex) quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35°S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra-specific wing morphometrics. After morphological analysis, molecular characterization of Cx. quinquefasciatus and intermediate forms was performed by polymerase chain reaction of the polymorphic nuclear region of the second intron of the acetylcholinesterase locus. Additionally, the morphology of adult female wings collected from six locations was analyzed. Wing centroid sizes were significantly different between some geographical pairs. Mean values of R2/R2+3 differed significantly after pairwise comparisons. The overall wing shape represented by morphometric characters could be divided into two main groupings. Our data suggest that Brazilian samples are morphologically and genetically distinct from the Argentinean samples and also indicated a morphological distinction between northern and southern populations of Brazilian Cx. quinquefasciatus. We suggest that wing morphology may be used for preliminary assessment of population structure of Cx. quinquefasciatusin Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania infantum (syn. Leishmania chagasi) is the etiological agent of visceral leishmaniasis (VL) in Brazil. The epidemiology of VL is poorly understood. Therefore, a more detailed molecular characterization at an intraspecific level is certainly needed. Herein, three independent molecular methods, multilocus microsatellite typing (MLMT), random amplification of polymorphic DNA (RAPD) and simple sequence repeats-polymerase chain reaction (SSR-PCR), were used to evaluate the genetic diversity of 53 L. infantum isolates from five different endemic areas in Brazil. Population structures were inferred by distance-based and Bayesian-based approaches. Eighteen very similar genotypes were detected by MLMT, most of them differed in only one locus and no correlation was found between MLMT profiles, geographical origin or the estimated population structure. However, complex profiles composed of 182 bands obtained by both RAPD and SSR-PCR assays gave different results. Unweighted pair group method with arithmetic mean trees built from these data revealed a high degree of homogeneity within isolates of L. infantum. Interestingly, despite this genetic homogeneity, most of the isolates clustered according to their geographical origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate whether environmental heterogeneity contributes to the genetic heterogeneity in Anopheles triannulatus, larval habitat characteristics across the Brazilian states of Roraima and Pará and genetic sequences were examined. A comparison with Anopheles goeldii was utilised to determine whether high genetic diversity was unique to An. triannulatus. Student t test and analysis of variance found no differences in habitat characteristics between the species. Analysis of population structure of An. triannulatus and An. goeldii revealed distinct demographic histories in a largely overlapping geographic range. Cytochrome oxidase I sequence parsimony networks found geographic clustering for both species; however nuclear marker networks depicted An. triannulatus with a more complex history of fragmentation, secondary contact and recent divergence. Evidence of Pleistocene expansions suggests both species are more likely to be genetically structured by geographic and ecological barriers than demography. We hypothesise that niche partitioning is a driving force for diversity, particularly in An. triannulatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Documenting and preserving the genetic diversity of populations, which conditions their long-term survival, have become a major issue in conservation biology. The loss of diversity often documented in declining populations is usually assumed to result from human disturbances; however, historical biogeographic events, otherwise known to strongly impact diversity, are rarely considered in this context. We apply a multilocus phylogeographic study to investigate the late-Quaternary history of a tree frog (Hyla arborea) with declining populations in the northern and western part of its distribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diversity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations. While two of the main refugial lineages remained limited to the Balkans (Adriatic coast, southern Balkans), a third one expanded to recolonize Northern and Western Europe, loosing much of its diversity in the process. Our findings show that mobile and a priori homogeneous taxa may also display substructure within glacial refugia ('refugia within refugia') and emphasize the importance of the Balkans as a major European biodiversity centre. Moreover, the distribution of diversity roughly coincides with regional conservation situations, consistent with the idea that historically impoverished genetic diversity may interact with anthropogenic disturbances, and increase the vulnerability of populations. Phylogeographic models seem important to fully appreciate the risks of local declines and inform conservation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, we used multilocus sequence typing (MLST) to understand how Romanian group B streptococcus (GBS) strains fit into the global GBS population structure. Colonising isolates recovered from adult human females were tested for antibiotic resistance, were molecularly serotyped based on the capsular polysaccharide synthesis (cps) gene cluster and further characterised using a set of molecular markers (surface protein genes, pilus-encoded islands and mobile genetic elements inserted in the scpB-lmb intergenic region). Pulsed-field gel electrophoresis was used to complement the MLST clonal distribution pattern of selected strains. Among the 55 strains assigned to six cps types (Ia, Ib, II-V), 18 sequence types (STs) were identified by MLST. Five STs represented new entries to the MLST database. The prevalent STs were ST-1, ST-17, ST-19 and ST-28. Twenty molecular marker profiles were identified. The most common profiles (rib+GBSi1+PI-1, rib+GBSi1+PI-1, PI-2b and alp2/3+PI-1, PI-2a) were associated with the cps III/ST-17 and cps V/ST-1 strains. A cluster of fluoroquinolone-resistant strains was detected among the cps V/ST-19 members; these strains shared alp1 and IS1548 and carried PI-1, PI-2a or both. Our results support the usefulness of implementing an integrated genotyping system at the reference laboratory level to obtain the reliable data required to make comparisons between countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of mitochondrial DNA (mtDNA) control region polymorphism and of variation at 10 nuclear microsatellite loci were used to investigate the mechanisms and genetic consequences of postglacial expansion of Myotis myotis in Europe. Initial sampling consisted of 480 bats genotyped in 24 nursery colonies arranged along a transect of approximately 3000 km. The phylogeographical survey based on mtDNA sequences revealed the existence of major genetic subdivisions across this area, with several suture zones between haplogroups. Such zones of secondary contact were found in the Alps and Rhodopes, whereas other potential barriers to gene flow, like the Pyrenees, did not coincide with genetic discontinuities. Areas of population admixture increased locally the genetic diversity of colonies, which confounded the northward decrease in nucleotide diversity predicted using classical models of postglacial range expansion. However, when analyses were restricted to a subset of 15 nurseries originating from a single presumed glacial refugium, mtDNA polymorphism did indeed support a northwards decrease in diversity. Populations were also highly structured (PhiST = 0.384). Conversely, the same subset of colonies showed no significant latitudinal decrease in microsatellite diversity and much less population structure (FST = 0.010), but pairwise genetic differentiation at these nuclear markers was strongly correlated with increasing geographical distance. Together, this evidence suggests that alleles carried via male bats have maintained enough nuclear gene flow to counteract the effects of recurrent bottlenecks generally associated with recolonization processes. As females are highly philopatric, we argue that the maternally transmitted mtDNA marker better reflects the situation of past, historical gene flow, whereas current levels of gene flow are better reflected by microsatellite markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les écosystèmes fournissent de nombreuses ressources et services écologiques qui sont utiles à la population humaine. La biodiversité est une composante essentielle des écosystèmes et maintient de nombreux services. Afin d'assurer la permanence des services écosystémiques, des mesures doivent être prises pour conserver la biodiversité. Dans ce but, l'acquisition d'informations détaillées sur la distribution de la biodiversité dans l'espace est essentielle. Les modèles de distribution d'espèces (SDMs) sont des modèles empiriques qui mettent en lien des observations de terrain (présences ou absences d'une espèce) avec des descripteurs de l'environnement, selon des courbes de réponses statistiques qui décrive la niche réalisée des espèces. Ces modèles fournissent des projections spatiales indiquant les lieux les plus favorables pour les espèces considérées. Le principal objectif de cette thèse est de fournir des projections plus réalistes de la distribution des espèces et des communautés en montagne pour le climat présent et futur en considérant non-seulement des variables abiotiques mais aussi biotiques. Les régions de montagne et l'écosystème alpin sont très sensibles aux changements globaux et en même temps assurent de nombreux services écosystémiques. Cette thèse est séparée en trois parties : (i) fournir une meilleure compréhension du rôle des interactions biotiques dans la distribution des espèces et l'assemblage des communautés en montagne (ouest des Alpes Suisses), (ii) permettre le développement d'une nouvelle approche pour modéliser la distribution spatiale de la biodiversité, (iii) fournir des projections plus réalistes de la distribution future des espèces ainsi que de la composition des communautés. En me focalisant sur les papillons, bourdons et plantes vasculaires, j'ai détecté des interactions biotiques importantes qui lient les espèces entre elles. J'ai également identifié la signature du filtre de l'environnement sur les communautés en haute altitude confirmant l'utilité des SDMs pour reproduire ce type de processus. A partir de ces études, j'ai contribué à l'amélioration méthodologique des SDMs dans le but de prédire les communautés en incluant les interactions biotiques et également les processus non-déterministes par une approche probabiliste. Cette approche permet de prédire non-seulement la distribution d'espèces individuelles, mais également celle de communautés dans leur entier en empilant les projections (S-SDMs). Finalement, j'ai utilisé cet outil pour prédire la distribution d'espèces et de communautés dans le passé et le futur. En particulier, j'ai modélisé la migration post-glaciaire de Trollius europaeus qui est à l'origine de la structure génétique intra-spécifique chez cette espèce et évalué les risques de perte face au changement climatique. Finalement, j'ai simulé la distribution des communautés de bourdons pour le 21e siècle afin d'évaluer les changements probables dans ce groupe important de pollinisateurs. La diversité fonctionnelle des bourdons va être altérée par la perte d'espèces spécialistes de haute altitude et ceci va influencer la pollinisation des plantes en haute altitude. - Ecosystems provide a multitude of resources and ecological services, which are useful to human. Biodiversity is an essential component of those ecosystems and guarantee many services. To assure the permanence of ecosystem services for future generation, measure should be applied to conserve biodiversity. For this purpose, the acquisition of detailed information on how biodiversity implicated in ecosystem function is distributed in space is essential. Species distribution models (SDMs) are empirical models relating field observations to environmental predictors based on statistically-derived response surfaces that fit the realized niche. These models result in spatial predictions indicating locations of the most suitable environment for the species and may potentially be applied to predict composition of communities and their functional properties. The main objective of this thesis was to provide more accurate projections of species and communities distribution under current and future climate in mountains by considering not solely abiotic but also biotic drivers of species distribution. Mountain areas and alpine ecosystems are considered as particularly sensitive to global changes and are also sources of essential ecosystem services. This thesis had three main goals: (i) a better ecological understanding of biotic interactions and how they shape the distribution of species and communities, (ii) the development of a novel approach to the spatial modeling of biodiversity, that can account for biotic interactions, and (iii) ecologically more realistic projections of future species distributions, of future composition and structure of communities. Focusing on butterfly and bumblebees in interaction with the vegetation, I detected important biotic interactions for species distribution and community composition of both plant and insects along environmental gradients. I identified the signature of environmental filtering processes at high elevation confirming the suitability of SDMs for reproducing patterns of filtering. Using those case-studies, I improved SDMs by incorporating biotic interaction and accounting for non-deterministic processes and uncertainty using a probabilistic based approach. I used improved modeling to forecast the distribution of species through the past and future climate changes. SDMs hindcasting allowed a better understanding of the spatial range dynamic of Trollius europaeus in Europe at the origin of the species intra-specific genetic diversity and identified the risk of loss of this genetic diversity caused by climate change. By simulating the future distribution of all bumblebee species in the western Swiss Alps under nine climate change scenarios for the 21st century, I found that the functional diversity of this pollinator guild will be largely affected by climate change through the loss of high elevation specialists. In turn, this will have important consequences on alpine plant pollination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Glutathione (GSH), a major cellular redox regulator and antioxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse as model system with 60% decreased brain GSH levels and, thus, strong vulnerability to oxidative stress, we have shown that GSH dysregulation results in abnormal mouse brain morphology (e.g., reduced parvalbumin, PV, immuno-reactivity in frontal areas) and function. Additional oxidative stress, induced by GBR12909 (a dopamine re-uptake inhibitor), enhances morphological changes even further. Aim: In the present study we use the GCLM KO mouse model system, asking now, whether GSH dysregulation also compromises mouse behaviour and cognition. Methods: Male and female wildtype (WT) and GCLM-KO mice are treated with GBR12909 or phosphate buffered saline (PBS) from postnatal day (P) 5 to 10, and are behaviourally tested at P 60 and older. Results: In comparison to WT, KO animals of both sexes are hyperactive in the open field, display more frequent open arm entries on the elevated plus maze, longer float latencies in the Porsolt swim test, and more frequent contacts of novel and familiar objects. Contrary to other reports of animal models with reduced PV immuno-reactivity, GCLM-KO mice display normal rule learning capacity and perform normally on a spatial recognition task. GCLM-KO mice do, however, show a strong deficit in object-recognition after a 15 minutes retention delay. GBR12909 treatment exerts no additional effect. Conclusions: The results suggest that animals with impaired regulation of brain oxidative stress are impulsive and have reduced behavioural control in novel, unpredictable contexts. Moreover, GSH dysregulation seems to induce a selective attentional or stimulus-encoding deficit: despite intensive object exploration, GCLM-KO mice cannot discriminate between novel and familiar objects. In conclusion, the present data indicate that GSH dysregulation may contribute to the manifestation of behavioural and cognitive anomalies that are associated with schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the human APOBEC3 family of editing enzymes can inhibit various mobile genetic elements. APOBEC3A (A3A) can block the retrotransposon LINE-1 and the parvovirus adeno-associated virus type 2 (AAV-2) but does not inhibit retroviruses. In contrast, APOBEC3G (A3G) can block retroviruses but has only limited effects on AAV-2 or LINE-1. What dictates this differential target specificity remains largely undefined. Here, we modeled the structure of A3A based on its homology with the C-terminal domain of A3G and further compared the sequence of human A3A to those of 11 nonhuman primate orthologues. We then used these data to perform a mutational analysis of A3A, examining its ability to restrict LINE-1, AAV-2, and foreign plasmid DNA and to edit a single-stranded DNA substrate. The results revealed an essential functional role for the predicted single-stranded DNA-docking groove located around the A3A catalytic site. Within this region, amino acid differences between A3A and A3G are predicted to affect the shape of the polynucleotide-binding groove. Correspondingly, transferring some of these A3A residues to A3G endows the latter protein with the ability to block LINE-1 and AAV-2. These results suggest that the target specificity of APOBEC3 family members is partly defined by structural features influencing their interaction with polynucleotide substrates.