979 resultados para SHAPE EVOLUTION
Resumo:
Fatigue testing was conducted using a kind of triangular isostress specimen to obtain the short-fatigue-crack behaviour of a weld low-carbon steel. The experimental results show that short cracks continuously initiate at slip bands within ferrite grain domains and the crack number per unit area gradually increases with increasing number of fatigue cycles. The dispersed short cracks possess an orientation preference, which is associated with the crystalline orientation of the relevant slip system. Based on the observed collective characteristics, computer modelling was carried out to simulate the evolution process of initiation, propagation and coalescence of short cracks. The simulation provides progressive displays which imitate the appearance of experimental observations. The results of simulation indicate that the crack path possesses a stable value of fractal dimension whereas the critical value of percolation covers a wide datum band, suggesting that the collective evolution process of short cracks is sensitive to the pattern of crack site distribution.
Resumo:
This paper introduces a statistical mesomechanical approach to the evolution of damage. A self-closed formulation of the damage evolution is derived.
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.
Resumo:
Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.
Resumo:
A numerical simulation of damage evolution in a two-dimensional system of micocracks is presented. It reveals that the failure is induced by a cascade of coalescences of microcracks, and the fracture surface appears fractal. A model of evolution-induced catastrophe is introduced. The fractal dimension is found to be a function of evolution rule only. This result could qualitatively explain the correlation of fractal dimension and fracture toughness discovered in experiments.
Resumo:
A new interrupting method was proposed and the split Hopkinson torsional bar (SHTB) was modified in order to eliminate the effect of loading reverberation on post-mortem observations. This makes the comparative study of macro- and microscopic observations on tested materials and relevant transient measurement of tau - gamma curve possible. The experimental results of the evolution of shear localization in in Ti-6Al-4V alloy studied with the modified SHTB are reported in the paper. The collapse of shear stress seems to be closely related to the appearance of a certain critical coalescence of microcracks. The voids may form within the localized shear zone at a quite early stage. Finally, void coalescence results in elongated cavities and their extension leads to fracture along the shear band.
Resumo:
A model of dynamical process and stochastic jump has been put forward to study the pattern evolution in damage-fracture. According to the final states of evolution processes, the evolution modes can be classified as globally stable modes (GS modes) and evolution induced catastrophic modes (ElC modes); the latter are responsible for fracture. A statistical description is introduced to clarify the pattern evolution in this paper. It is indicated that the appearance of fracture in disordered materials should be depicted by probability distribution function.