882 resultados para Robotics design framework
Resumo:
This thesis is presented in two parts. The first part is an attempt to set out a framework of factors influencing the problem solving stage of the architectural design process. The discussion covers the nature of architectural problems and some of the main ways in which they differ from other types of design problems. The structure of constraints that both the problem and the architect impose upon solutions are seen as of great importance in defining the type of design problem solving situation. The problem solver, or architect, is then studied. The literature of the psychology of thinking is surveyed for relevant work . All of the traditional schools of psychology are found wanting in terms of providing a comprehensive theory of thinking. Various types of thinking are examined, particularly structural and productive thought, for their relevance to design problem solving. Finally some reported common traits of architects are briefly reviewed. The second section is a report of u~o main experiments which model some aspects of architectural design problem solving. The first experiment examines the way in which architects come to understand the structure of their problems. The performances of first and final year architectural students are compared with those of postgraduate science students and sixth form pupils. On the whole these groups show significantly different results and also different cognitive strategies. The second experiment poses design problems which involve both subjective and objective criteria, and examines the way in which final year architectural students are able to relate the different types of constraint produced. In the final section the significance of all the results is suggested. Some educational and methodological implications are discussed and some further experiments and investigations are proposed.
Resumo:
This thesis is a theoretical study of the accuracy and usability of models that attempt to represent the environmental control system of buildings in order to improve environmental design. These models have evolved from crude representations of a building and its environment through to an accurate representation of the dynamic characteristics of the environmental stimuli on buildings. Each generation of models has had its own particular influence on built form. This thesis analyses the theory, structure and data of such models in terms of their accuracy of simulation and therefore their validity in influencing built form. The models are also analysed in terms of their compatability with the design process and hence their ability to aid designers. The conclusions are that such models are unlikely to improve environmental performance since: a the models can only be applied to a limited number of building types, b they can only be applied to a restricted number of the characteristics of a design, c they can only be employed after many major environmental decisions have been made, d the data used in models is inadequate and unrepresentative, e models do not account for occupant interaction in environmental control. It is argued that further improvements in the accuracy of simulation of environmental control will not significantly improve environmental design. This is based on the premise that strategic environmental decisions are made at the conceptual stages of design whereas models influence the detailed stages of design. It is hypothesised that if models are to improve environmental design it must be through the analysis of building typologies which provides a method of feedback between models and the conceptual stages of design. Field studies are presented to describe a method by which typologies can be analysed and a theoretical framework is described which provides a basis for further research into the implications of the morphology of buildings on environmental design.
Resumo:
A survey of the existing state-of-the-art of turbine blade manufacture highlights two operations that have not been automated namely that of loading of a turbine blade into an encapsulation die, and that of removing a machined blade from the encapsulation block. The automation of blade decapsulation has not been pursued. In order to develop a system to automate the loading of an encapsulation die a prototype mechanical handling robot has been designed together with a computer controlled encapsulation die. The robot has been designed as a mechanical handling robot of cylindrical geometry, suitable for use in a circular work cell. It is the prototype for a production model to be called `The Cybermate'. The prototype robot is mechanically complete but due to unforeseen circumstances the robot control system is not available (the development of the control system did not form a part of this project), hence it has not been possible to fully test and assess the robot mechanical design. Robot loading of the encapsulation die has thus been simulated. The research work with regard to the encapsulation die has focused on the development of computer controlled, hydraulically actuated, location pins. Such pins compensate for the inherent positional inaccuracy of the loading robot and reproduce the dexterity of the human operator. Each pin comprises a miniature hydraulic cylinder, controlled by a standard bidirectional flow control valve. The precision positional control is obtained through pulsing of the valves under software control, with positional feedback from an 8-bit transducer. A test-rig comprising one hydraulic location pin together with an opposing spring loaded pin has demonstrated that such a pin arrangement can be controlled with a repeatability of +/-.00045'. In addition this test-rig has demonstrated that such a pin arrangement can be used to gauge and compensate for the dimensional error of the component held between the pins, by offsetting the pin datum positions to allow for the component error. A gauging repeatability of +/- 0.00015' was demonstrated. This work has led to the design and manufacture of an encapsulation die comprising ten such pins and the associated computer software. All aspects of the control software except blade gauging and positional data storage have been demonstrated. Work is now required to achieve the accuracy of control demonstrated by the single pin test-rig, with each of the ten pins in the encapsulation die. This would allow trials of the complete loading cycle to take place.
Resumo:
In analysing manufacturing systems, for either design or operational reasons, failure to account for the potentially significant dynamics could produce invalid results. There are many analysis techniques that can be used, however, simulation is unique in its ability to assess detailed, dynamic behaviour. The use of simulation to analyse manufacturing systems would therefore seem appropriate if not essential. Many simulation software products are available but their ease of use and scope of application vary greatly. This is illustrated at one extreme by simulators which offer rapid but limited application whilst at the other simulation languages which are extremely flexible but tedious to code. Given that a typical manufacturing engineer does not posses in depth programming and simulation skills then the use of simulators over simulation languages would seem a more appropriate choice. Whilst simulators offer ease of use their limited functionality may preclude their use in many applications. The construction of current simulators makes it difficult to amend or extend the functionality of the system to meet new challenges. Some simulators could even become obsolete as users, demand modelling functionality that reflects the latest manufacturing system design and operation concepts. This thesis examines the deficiencies in current simulation tools and considers whether they can be overcome by the application of object-oriented principles. Object-oriented techniques have gained in popularity in recent years and are seen as having the potential to overcome any of the problems traditionally associated with software construction. There are a number of key concepts that are exploited in the work described in this thesis: the use of object-oriented techniques to act as a framework for abstracting engineering concepts into a simulation tool and the ability to reuse and extend object-oriented software. It is argued that current object-oriented simulation tools are deficient and that in designing such tools, object -oriented techniques should be used not just for the creation of individual simulation objects but for the creation of the complete software. This results in the ability to construct an easy to use simulator that is not limited by its initial functionality. The thesis presents the design of an object-oriented data driven simulator which can be freely extended. Discussion and work is focused on discrete parts manufacture. The system developed retains the ease of use typical of data driven simulators. Whilst removing any limitation on its potential range of applications. Reference is given to additions made to the simulator by other developers not involved in the original software development. Particular emphasis is put on the requirements of the manufacturing engineer and the need for Ihe engineer to carrv out dynamic evaluations.
Resumo:
Research in safety management has been inhibited by lack of consensus as to the definitions of the terms with which it is concerned and, in general, the lack of an agreed theoretical framework within which to collate and contrast empirical findings. This thesis sets out definitions of key terms (hazard, risk, accident, incident and safety) and provides a theoretical framework. This framework has been informed by many sources but especially the Management Oversight and Risk Tree (MORT), cybernetics and the Viable System Model (VSM). Fieldwork designs are proposed for the empirical development of an analytical framework and its use to assist study of the development of safety management in organisations.
Resumo:
Adaptability for distributed object-oriented enterprise frameworks is a critical mission for system evolution. Today, building adaptive services is a complex task due to lack of adequate framework support in the distributed computing environment. In this thesis, we propose a Meta Level Component-Based Framework (MELC) which uses distributed computing design patterns as components to develop an adaptable pattern-oriented framework for distributed computing applications. We describe our novel approach of combining a meta architecture with a pattern-oriented framework, resulting in an adaptable framework which provides a mechanism to facilitate system evolution. The critical nature of distributed technologies requires frameworks to be adaptable. Our framework employs a meta architecture. It supports dynamic adaptation of feasible design decisions in the framework design space by specifying and coordinating meta-objects that represent various aspects within the distributed environment. The meta architecture in MELC framework can provide the adaptability for system evolution. This approach resolves the problem of dynamic adaptation in the framework, which is encountered in most distributed applications. The concept of using a meta architecture to produce an adaptable pattern-oriented framework for distributed computing applications is new and has not previously been explored in research. As the framework is adaptable, the proposed architecture of the pattern-oriented framework has the abilities to dynamically adapt new design patterns to address technical system issues in the domain of distributed computing and they can be woven together to shape the framework in future. We show how MELC can be used effectively to enable dynamic component integration and to separate system functionality from business functionality. We demonstrate how MELC provides an adaptable and dynamic run time environment using our system configuration and management utility. We also highlight how MELC will impose significant adaptability in system evolution through a prototype E-Bookshop application to assemble its business functions with distributed computing components at the meta level in MELC architecture. Our performance tests show that MELC does not entail prohibitive performance tradeoffs. The work to develop the MELC framework for distributed computing applications has emerged as a promising way to meet current and future challenges in the distributed environment.
Resumo:
OBJECTIVES: The objective of this research was to design a clinical decision support system (CDSS) that supports heterogeneous clinical decision problems and runs on multiple computing platforms. Meeting this objective required a novel design to create an extendable and easy to maintain clinical CDSS for point of care support. The proposed solution was evaluated in a proof of concept implementation. METHODS: Based on our earlier research with the design of a mobile CDSS for emergency triage we used ontology-driven design to represent essential components of a CDSS. Models of clinical decision problems were derived from the ontology and they were processed into executable applications during runtime. This allowed scaling applications' functionality to the capabilities of computing platforms. A prototype of the system was implemented using the extended client-server architecture and Web services to distribute the functions of the system and to make it operational in limited connectivity conditions. RESULTS: The proposed design provided a common framework that facilitated development of diversified clinical applications running seamlessly on a variety of computing platforms. It was prototyped for two clinical decision problems and settings (triage of acute pain in the emergency department and postoperative management of radical prostatectomy on the hospital ward) and implemented on two computing platforms-desktop and handheld computers. CONCLUSIONS: The requirement of the CDSS heterogeneity was satisfied with ontology-driven design. Processing of application models described with the help of ontological models allowed having a complex system running on multiple computing platforms with different capabilities. Finally, separation of models and runtime components contributed to improved extensibility and maintainability of the system.
Resumo:
Once the factory worker was considered to be a necessary evil, soon to be replaced by robotics and automation. Today, many manufacturers appreciate that people in direct productive roles can provide important flexibility and responsiveness, and so significantly contribute to business success. The challenge is no longer to design people out of the factory, but to design factory environment that help to get the best performance from people. This paper describes research that has set out to help to achieve this by expanding the capabilities of simulation modeling tools currently used by practitioners.
Resumo:
This article categorises manufacturing strategy design processes and presents the characteristics of resulting strategies. This work will therefore assist practitioners to appreciate the implications of planning activities. The article presents a framework for classifying manufacturing strategy processes and the resulting strategies. Each process and respective strategy is then considered in detail. In this consideration the preferred approach is presented for formulating a world class manufacturing strategy. Finally, conclusions and recommendations for further work are given.
Resumo:
This paper presents a study of engineering design groups that seeks to explain how knowing other participants can influence processes and outcomes in design projects. Research in this paper contributes a framework to approach understanding how interpersonal relationships influence group processes and outcomes. This acknowledges that engineering design is achieved through individuals working in groups. First a temporal perspective is introduced to understand how individuals (through interpersonal relationships), group processes and outcomes influence each other; secondly identity is presented as a theme to focus on how knowing other participants identity influences group processes and outcomes. Within this framework it is recognised that engineering design has different levels of complexity of which two aspects are considered: design type and design setting. These aspects place different demands on a project group and its members and this structure provides an opportunity for cross case analysis to generalise findings.
Resumo:
This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper seeks to advance research and practice related to the role of employers in all stages of the assessment process of work-based learning (WBL) within a tripartite relationship of higher education institution (HEI), student and employer. It proposes a research-informed quality enhancement framework to develop good practice in engaging employers as partners in assessment. The Enhancement Framework comprises three dimensions, each of which includes elements and questions generated by the experiences of WBL students, HEI staff and employers. The three dimensions of the Enhancement Framework are: 1. ‘premises of assessment’ encompassing issues of learning, inclusion, standards and value; 2. ‘practice’, encompassing stages of assessment made up of course design, assessment task, responsibilities, support, grading and feedback; 3. ‘communication of assessment’ with the emphasis on role clarity, language and pathways. With its prompt questions, the Enhancement Framework may be used as a capacity-building tool for promoting, sustaining, benchmarking and evaluating productive dialogue and critical reflection about assessment between WBL partners. The paper concludes by emphasising the need for professional development as well as policy and research development, so that assessment in WBL can more closely correspond to the potentially transformative nature of the learning experience.
A conceptual framework for supply chain collaboration:empirical evidence from the agri-food industry
Resumo:
Purpose - The purpose of this paper is to analyse the concept of supply chain collaboration and to provide an overall framework that can be used as a conceptual landmark for further empirical research. In addition, the concept is explored in the context of agri-food industry and particularities are identified. Finally, the paper submits empirical evidence from an exploratory case study in the agri-food industry, at the grower-processor interface, and information regarding the way the concept is actually applied in small medium-sized enterprises (SMEs) is presented. Design/methodology/approach - The paper employed case study research by conducting in-depth interviews in the two companies. Findings - Supply chain collaboration concept is of significant importance for the agri-food industry however, some constraints arise due to the nature of industry's products, and the specific structure of the sector. Subsequently, collaboration in the supply chain is often limited to operational issues and to logistics-related activities. Research limitations/implications - Research is limited to a single case study and further qualitative testing of the conceptual model is needed in order to adjust the model before large scale testing. Practical implications - Case study findings may be transferable to other similar dual relationships at the grower-processor interface. Weaker parts in asymmetric relationships have opportunities to improve their position, altering the dependence balance, by achieving product/process excellence. Originality/value - The paper provides evidence regarding the applicability of the supply chain collaboration concept in the agri-food industry. It takes into consideration not relationships between big multinational companies, but SMEs. © Emerald Group Publishing Limited.
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.