885 resultados para Respiration artificial
Resumo:
The present study evaluated the effect of artificial oocyte activation (AOA) with calcium ionophore A23187 oil intracytoplasmic sperm injection (ICSI) cycles using spermatozoa from different sources. The 314 cycles evaluated were divided into three groups according to sperm origin, the ejaculated group (n = 92), the epididymal group (n = 82). and the testicular roup (n = 140). Each group was further split into experimental subgroups, depending oil whether or no AOA was performed. In additions the cycles of women younger than 36 years were evaluated separately. For each experimental group, ICSI outcomes were compared between subgroups. No significant difference was observed between subgroups for all sperm origin groups. When evaluating only the cycles of women younger than 36 years of age, AOA increased the percentage of high-quality embryos (74.5 versus 53.0%. P = 0.011) and the implantation rate (19.3 versus 10.5%, P = 0.0025) when it was used with ejaculated spermatozoa, and the percentage of high-quality embryos (64.4 versus 50.3%, P = 0.006) when epididymal spermatozoa were used. These results may suggest that both sperm maturity and oocyte quality play a role in oocyte activation. However. this study is to be continued to confirm these findings.
Resumo:
Objective: To evaluate the effect of artificial oocyte activation (AOA) on intracytoplasmic sperm injection (ICSI) cycles using surgically retrieved sperm.Design: Laboratory study.Setting: Fertility/assisted fertilization center.Patient(s): Couples undergoing surgical sperm retrieval for ICSI (n = 204).Intervention(s): Application of calcium ionophore A23187 for AOA.Main Outcome Measure(s): Cycles were divided into experimental groups according to the origin of the sperm used for injection and the type of azoospermia: [1] testicular sperm aspiration in nonobstructive-azoospermic patients (TESA-NOA group, n = 58), [2] TESA in obstructive-azoospermic patients (TESA-OA group, n = 48), [3] and percutaneous epididymal sperm aspiration in obstructive-azoospermic patients (PESA-OA, n = 98). For each experimental group, cycles where AOA was applied (subgroup: activation) were compared with cycles in which AOA was not applied (Subgroup: control). The fertilization, high-quality embryo, implantation, and pregnancy rates were compared among the subgroups.Result(s): For patients undergoing TESA, AOA did not improve ICSI outcomes for either type of azoospermia. However, for cases in which the injected sperm were retrieved from the epididymis, a statistically significantly increased rate of high-quality embryos was observed with AOA.Conclusion(s): Artificial oocyte activation may improve ICSI outcomes in azoospermic patients when epididymal, but not testicular spermatozoa, are injected. (Fertil Steril (R) 2009;92:131-6. (C)2009 by American Society for Reproductive Medicine.)
Resumo:
The objective of this study was to evaluate the factors that may affect conception rates (CR) following artificial insemination (AI) or embryo transfer (ET) in lactating Holstein cows. Estrous cycling cows producing 33.1 +/- 7.2 kg of milk/d received PGF(2 alpha) injections and were assigned randomly to 1 of 2 groups (AI or ET). Cows detected in estrus (n = 387) between 48 and 96 h after the PGF2a injection received AI (n = 227) 12 h after detection of estrus or ET (n = 160) 6 to 8 d later (1 fresh embryo, grade 1 or 2, produced from nonlactating cows). Pregnancy was diagnosed at 28 and 42 d after estrus, and embryonic loss occurred when a cow was pregnant on d 28 but not pregnant on d 42. Ovulation, conception, and embryonic loss were analyzed by a logistic model to evaluate the effects of covariates [days in milk (DIM), milk yield, body temperature (BT) at d 7 and 14 post-AI, and serum concentration of progesterone (P4) at d 7 and 14 post-AI] on the probability of success. The first analysis included all cows that were detected in estrus. The CR of AI and ET were different on d 28 (AI, 32.6% vs. ET, 49.4%) and 42 (AI, 29.1% vs. ET, 38.8%) and were negatively influenced by high BT (d 7) and DIM. The second analysis included only cows with a corpus luteum on d 7. Ovulation rate was 84.8% and was only negatively affected by DIM. Conception rates of AI and ET were different on d 28 (AI, 37.9% vs. ET, 59.4%) and 42 (AI, 33.8% vs. ET, 46.6%) and were negatively influenced by high BT (d 7). The third analysis included only ovulating cows that were 7 d postestrus. Conception rates of AI and ET were different on d 28 (AI, 37.5% vs. ET, 63.2%) and 42 (AI, 31.7% vs. ET, 51.7%) and were negatively influenced by high BT (d 7). There was a positive effect of serum concentration of P4 and a negative effect of milk production on the probability of conception for the AI group but not for the ET group. The fourth analysis was embryonic loss (AI, 10.8% vs. ET, 21.5%). The transfer of fresh embryos is an important tool to increase the probability of conception of lactating Holstein cows because it can bypass the negative effects of milk production and low P4 on the early embryo. The superiority of ET vs. AI is more evident in high-producing cows. High BT measured on d 7 had a negative effect on CR and embryonic retention.
Resumo:
Vacas da raça Holandesas em lactação (n=158) aos 213±112 dias de lactação e produção de 26±9kg leite/dia, foram aleatoriamente distribuídas em três grupos: controle (GC, n=52, salina); GnRH (GG, n=55, 100mcg de gonadorelina); e hCG (GH, n=51, 2500UI de hCG) aplicado no dia 5 após a inseminação artificial (IA). A temperatura retal foi verificada no momento da IA, e as amostras de sangue coletadas nos dias 5, 7 e 12 após a IA. A concepção foi determinada entre os dias 42 e 49 após IA. As concentrações séricas de progesterona (P4 - ng/ml, média±EPM) para GC, GG, e GH foram, respectivamente: no dia 5: 2,7±0,4, 2,5±0,4 e 3,2±0,4; no dia 7: 4,8±0,4, 4,2±0,4 e 5,7±0,5; e no dia 12 após a IA: 5,2±0,4, 6,9±0,4 e 8,5±0,5. O aumento proporcional na concentração sérica de P4 entre os dias 5 e 7 após IA (GC: 178%, GG: 168%, e GH: 178%) sugere que os tratamentos não induziram efeito luteotrópico no corpo lúteo (CL) existente. O aumento na P4 sérica entre os dias 7 e 12 nos animais tratados com GnRH ou hCG (GG: 164% e GH: 149%, P<0,01) em relação aos animais controle (GC: 18%, P=0,31), sugere a indução de novo CL. Os tratamentos com GnRH ou hCG aumentaram as taxas de concepção nas vacas com temperatura retal abaixo de 39,7°C (GC: 10,1%, n=26; GG: 36,8%, n=27 e GH: 32,8%, n=21), mas não em vacas com temperatura retal acima de 39,7°C (15,2% n=26; 17,8%, n=28 e 24,4%, n=30). Os resultados sugerem que a alta temperatura corporal pode mascarar os efeitos positivos do tratamento com GnRH ou hCG no dia 5 após a IA, na concepção.
Resumo:
No experimento I, foi avaliada a alteração da condição corporal (CC) pré e pós-parto em 155 novilhas inseminadas para parir de setembro a dezembro. A CC foi avaliada mensalmente no pré e pós-parto, de junho a fevereiro. No experimento II, 538 vacas primíparas foram sincronizadas com o protocolo de inseminação artificial em tempo fixo (IATF) que usou estradiol junto ao dispositivo intravaginal de progesterona (CIDR®). As taxas de ciclicidade, sincronização e concepção foram avaliadas por ultra-som. No experimento I, os animais que pariram primeiro tiveram maior (P<0,001) redução na CC pós-parto. No experimento II, foi observado maior CC (P<0,0001) nos animais com menor número de dias pós-parto, maior (P<0,05) taxa de sincronização nas vacas de melhor CC e aumento (P<0,0001) na taxa de concepção proporcional ao aumento na CC (incremento médio na concepção de seis pontos percentuais para cada 0,25 ponto na CC). Não se deve antecipar a parição de novilhas de corte quando se pretende realizar IATF no início da estação de monta subseqüente.
Indução à ovulação pelo uso de LHRH análogo e fertilização artificial em rã-touro (Rana catesbeiana)
Resumo:
Este trabalho teve por objetivo aperfeiçoar a técnica de reprodução induzida existente para rã-touro, com o intuito de aumentar a taxa de fecundidade e viabilizar seu uso pelo produtor. As doses hormonais para a indução da ovulação e espermiação seguiram as propostas de FALCON e CULLEY (1995) e ALONSO (1997); entretanto, a técnica de fertilização artificial foi adaptada da metodologia para reprodução artificial de peixes com ovos não-aderentes (WOYNAROVICH e HORVÁTH, 1983). A técnica proposta apresenta as seguintes etapas: I) sincronização da ovulação e da espermiação, por meio de hormônio liberador de gonadotropina ((Des-Gli10, D-His(Bzl)6, Pro-NHEt9)-LHRH)); II) extração dos óvulos de cada fêmea (1 a 2 minutos); III) fertilização dos óvulos (2 minutos) com líquido espermático diluído em 100 mL de água; IV) hidratação dos ovos em 10 a 20 litros de água; e V) incubação dos ovos em quadros de tela de 1x 0,70 m, com malha de 1 mm. As taxas de fertilização obtidas com as modificações propostas foram superiores a 60%. Ressalta-se ainda que a técnica propiciou a obtenção, a partir de um mesmo animal, de várias desovas, sendo que cada fêmea pode ovular em intervalos de, aproximadamente, 45 dias.
Resumo:
Two experiments were designed to evaluate strategies to increase fertility of Bos indicus postpubertal heifers and nonlactating cows submitted to a fixed-time artificial insemination (TAI) protocol consisting of an intravaginal device containing 1.9 g of progesterone (CIDR) insertion + estradiol benzoate on Day 0, CIDR withdrawal + estradiol cypionate on Day 9, and TAI on Day 11. In Experiment 1, heifers (n = 1153) received a new or an 18-d previously used CIDR and, on Day 9, prostaglandin F(2 alpha) (PGF(2 alpha)) + 0, 200, or 300 IU equine chorionic gonadotropin (eCG). Heifers treated with a new CIDR had greater (least squares means +/- SEM) serum concentration of progesterone on Day 9 (3.06 +/- 0.09 ng/mL vs. 2.53 +/- 0.09 ng/mL; P < 0.05) and a smaller follicle at TAI (11.61 +/- 0.11 nim vs. 12.05 +/- 0.12 mm; P < 0.05). Heifers with smaller follicles at TAI had lesser serum progesterone, concentrations on Day 18 and reduced rates of ovulation, conception, and pregnancy (P < 0.05). Treatment with eCG improved (P < 0.05) follicle diameter at TAI (11.50 +/- 0.10 mm, 11.90 +/- 0.11 mm, and 12.00 +/- 0.10 mm, for 0, 100, and 200 IU, respectively), serum progesterone concentration on Day 18 (2.77 +/- 0.11 ng/mL, 3.81 +/- 0.11 ng/mL, and 4.87 +/- 0.11 ng/mL), and rates of ovulation (83.8%, 88.5%, and 94.3%) and pregnancy (41.3%, 47.0%, and 46.7%). In Experiment 2, nonlactating Nelore cows (n = 702) received PGF(2 alpha) treatment on Days 7 or 9 and, on Day 9, 0 or 300 IU cCG. Cows receiving PGF(2 alpha) on Day 7 had lesser serum progesterone concentrations on Day 9 (3.05 +/- 0.21 ng/mL vs. 4.58 +/- 0.21 ng/mL; P < 0.05), a larger follicle at TAI (11.54 +/- 0.21 mm vs. 10.84 +/- 0.21 mm; P < 0.05), and improved (P < 0.05) rates of ovulation (85.4% vs. 77.0%), conception (60.9% vs. 47.2%), and pregnancy (52.0% vs. 36.4%). Treatment with eCG improved (P < 0.05) serum progesterone concentration on Day 18 (3.24 +/- 0.14 ng/mL vs. 4.55 +/- 0.14 ng/mL) and the rates of ovulation (72.4% vs. 90.0%) and pregnancy (37.5% vs. 50.8%). In conclusion, giving PGF(2 alpha) earlier in the protocol in nonlactating cows and eCG treatment in postpubertal heifers and nonlactating cows improved fertility in response to a TAI (progesterone + estradiol) protocol. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In Experiments 1, 2, and 3, we evaluated the effects of temporary weaning (TW), equine chorionic gonadotropin (eCG), and follicle-stimulating hormone (FSH) treatments on results of it fixed-time artificial insemination (TAI) protocol in postpartum Bos indicus cows. In Experiment 1, treatment with 400 IU eCG or with TW for 48 h consistently improved pregnancy rates (PRs) at TAI, but, in Experiment 2, FSH treatment was less effective than eCG or TW. In Experiment 3, the inclusion of eCG treatment in cows subjected to TW did not improve PRs. We concluded that TW or 400 IU eCG should be included in the TAI protocol in postpartum Bos indicus cows to enhance fertility. In Experiment 4, we used records front heifers and cows treated with the proposed protocol during the 2006-2007 (n = 27,195) and 2007-2008 (n = 36,838) breeding seasons from multiple locations in Brazil to evaluate factors potentially affecting PRs. Overall PR at TAI was 49.6% (31,786 of 64,033). Pregnancy rate differed (P < 0.01) among farm within location (results ranging between 26.8% and 68.0%; P < 0.01), cow group within farm, by breed (Bos indicus, 48.3% [26,123 of 54,145]; Bos taurus, 61.7% [3652 of 5922]; and crossbred Bos indicus x Bos taurus, 50.7% [2011 of 3966]), category (nulliparous, 39.6% [2095 of 52901] suckled primiparous, 45.2% [3924 of 8677]; suckled multiparous, 51.8% [24,245 of 46,767]; and nonsuckled multiparous, 46.1% [1522 of 3299]), body condition score at TAI (<= 2.5 43.0% [3409 of 7923]; 3.0, 49.6% [18,958 of 38,229]; and >3.5, 52.7% [9419 of 17,881]). Days postpartum at beginning, of protocol did not affect PR (30 to 60 d, 47.6% [4228 of 8881]; 61 to 90 d, 51.7% 116,325 to 31,5721; and 91 to 150 d, 50.8% [7616 to 14,991]; P > 0.1). Pregnancy rate was also consistently affected (P < 0.01) by sire (results ranging from 7.2% to 77.3%) and artificial insemination technician (results ranging from 15.1% to 81.8%). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Five experiments were conducted on commercial farms in Brazil aiming to develop a fixed-time artificial insemination (TAI) protocol that achieved pregnancy rates between 40% and 55% in Bos indicus cows. These studies resulted in the development of the following protocol: insertion of all intravaginal device containing 1.9 g of progesterone (CIDR) plus 2.0 mg im estradiol benzoate on Day 0; 12.5 mg im dinoprost tromethamine on Day 7 in cycling cows or oil Day 9 in anestrous cows; CIDR withdrawal plus 0.5 mg im estradiol cypionate plus temporary calf removal on Day 9; TAI (48 h after CIDR withdrawal) plus reuniting of calves with their dams on Day 11. Reduced dose of prostaglandin F(2 alpha) (PGF(2 alpha): 12.5 mg im dinoprost tromethamine) effectively caused luteolysis. In cycling cows, fertility was greater when the treatment with PGF(2 alpha) was administered on Day 7 than oil Day 9, but in anestrous cows, no effects of time of the PGF(2 alpha) treatment were found. Estradiol cypionate effectively replaced estradiol benzoate or gonadotropin-releasing hormone as the ovulatory stimulus, reducing labor and cost. In this protocol, CIDR inserts were successfully used four times (9 d each use) with no detrimental effects on fertility. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective was to compare two protocols for synchronizing ovulation in lactating Holstein cows submitted to timed AI (TAI) or timed ET (TET). Within each farm (n = 8), cows (n = 883; mean +/- SEM 166.24 +/- 3.27 d postpartum, yielding 36.8 +/- 0.34 kg of milk/d) were randomly assigned to receive either: 1) an intravaginal progesterone insert (CIDR (R)) with 1.9 g of progesterone + GnRH on Day -10, CIDR (R) withdrawal + PGF2 alpha on Day -3, and 1 mg estradiol cypionate on Day -2 (treatment GP-P-E; n(TAI) = 180; n(TET) = 260); or 2) a CIDR (R) insert + 2 mg estradiol benzoate on Day -10, PGF2 alpha on Day -3, CIDR (R) withdrawal + 1 mg estradiol cypionate on Day -2 (treatment EP-P-E; n(TAI) = 174; n(TET) = 269). Cows were subsequently randomly assigned to receive either TAT on Day 0 or TET on Day 7. Serum progesterone concentration on Day -3 was greater in GP-P-E than in EP-P-E (2.89 +/- 0.15 vs 2.29 +/- 0.15 ng/mL; P < 0.01), with no significant effect of group on serum progesterone on Day 7. Compared to cows submitted to TAI, those submitted to TET had greater pregnancy rates on Day 28 (44.0% [233/5291 vs 29.7% [105/354]; p < 0.001) and on Day 60 (37.6% [199/529] vs 26.5 [94/354]; P < 0.001). However, there were no effects of treatments (GP-P-E vs EP-P-E; P > 0.10) on synchronization (87.0% [383/440] vs 85.3% [378/443]), conception (TAI: 35.3% [55/156] vs 33.8% [50/148]; TET: 50.7% [115/227] vs 51.3% [118/230]) and pregnancy rates on Days 28 (TAT: 30.5% [55/180] vs 28.7% 150/174]; TET: 44.2% [115/260] vs 43.9% [118/2691) and 60 (TAI: 27.2% [49/80] vs 25.9% [45/174]; TET: 38.8% [101/260] vs 36.4% [98/269]). In conclusion, GP-P-E increased serum progesterone concentrations on Day -3, but rates of synchronization, conception, and pregnancy were not significantly different between cows submitted to GP-P-E and EP-P-E protocols, regardless of whether they were inseminated or received an embryo. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of experiment 1 was to evaluate the effects of treatments with human chorionic gonadotropin (hCG) or GnRH 7 d after induced ovulation on reproductive performance of lactating dairy cows submitted to timed artificial insemination (TAI) or timed embryo transfer (TET). A total of 834 potential breedings were used from 661 lactating Holstein cows (37.3 +/- 0.3 kg of milk/d). Cows had ovulation synchronized and were assigned randomly to receive TAI on d 0 or TET on d 7. Within each group, cows were assigned randomly to receive on d 7 no additional treatment (control; n(TAI) = 156; n(TET) = 126), a 100 mu g i.m. injection of GnRH (n(TAI) = 155; n(TET) = 124), or a 2,500 TU i.m. injection of hCG (ITA = 151; n(TET) = 122). Postbreeding treatment affected the percentages of pregnant cows at TET on d 28 (control: 38.1%; GnRH: 52.4%; hCG: 45.1%) and on d 60 (control: 32.5%; GnRH: 41.1%; hCG: 38.5%), but postbreeding treatment did not affect percentages of pregnant cows at TAT on d 28 (control: 30.1%; GnRH: 32.2%; hCG: 32.4%) or on d 60 (control: 25.6%; GnRH: 27.1%; hCG: 29.8%). The objective of experiment 2 was to evaluate the effect of a treatment with GnRH 7 d after TET on reproductive performance of lactating dairy cows that received a previous GnRH treatment at TET. A total of 285 potential breedings were used from 257 lactating Holstein cows (35.1 +/- 0.8 kg of milk/d). Cows had ovulation synchronized and were assigned for TET on d 7. Immediately after TET, all cows were treated with a 100 mu g i.m. injection of GnRH. on d 14, cows were assigned randomly to receive (G7-14; n = 147) or not (G7; n = 138) an additional injection of GnRH. Pregnancy diagnosis were performed on d 28 and 60. The additional treatment with GnRH on d 14 did not affect the percentages of pregnant cows on d 28 (G7: 48.5%; G7-14: 42.9%) or on d 60 (G7: 39.8%; G7-14: 37.4%). In conclusion, treatment with GnRH or hCG 7 d after induced ovulation increased conception rates in lactating dairy cows submitted to TET, but not in cows submitted to TAI. Moreover, treatment with GnRH 7 d after TET did not enhance reproductive performance of lactating dairy cows that received a previous GnRH treatment at TET.
Resumo:
Avaliaram-se os efeitos de diferentes níveis de ingestão de suplemento com milho moído finamente (MF) em vacas de corte, mantidas em pasto, após inseminação artificial em tempo fixo (IATF), sobre a concentração sérica de progesterona (P4) no dia 7, e sobre a concepção no dia 28 pós IATF. Trezentas e sessenta e quatro vacas Brangus, multíparas lactantes, tiveram as atividades folicular e luteal sincronizadas por tratamento com benzoato de estradiol (Estrogin; 2,0mg IM) e inserção de dispositivo intravaginal de P4 (CIDR) no dia -11, seguido por tratamento com PGF2 α (Lutalyse; 25mg IM) no dia - 4, retirada do CIDR e remoção temporária de bezerros no dia -2, e tratamento com GnRH (Fertagyl; 100 µ g IM), IATF e retorno dos bezerros no dia 0. No dia 0, as vacas foram aleatoriamente distribuídas para receber um dos quatro tratamentos: G1 -2kg/dia de MF do dia 0 ao dia 21; G2 -2kg/dia de MF do dia 0 ao dia 7, e 6kg/dia de MF do dia 8 ao dia 21; G3 -6kg/dia de MF do dia 0 ao dia 7, e 2kg/dia de MF do dia 8 ao dia 21; G4 -6kg/dia de MF do dia 0 ao dia 21. Amostras de sangue foram colhidas no dia 7, e o diagnóstico de gestação foi realizado por ultrassonografia no dia 28. As vacas suplementadas com 2kg/dia de MF apresentaram maior concentração sérica de P4 no dia 7 em relação às vacas suplementadas com 6kg/dia (1,58 vs. 1,28ng/mL; P<0,01, EPM=0,08). As vacas do G4 apresentaram maior taxa de concepção em relação às vacas do G1 (58,4 vs. 41,9%, respectivamente; P<0,05). O nível de consumo do suplemento energético após a IATF é negativamente associado às concentrações séricas de P4, porém positivamente associado à taxa de concepção em vacas de corte em pasto.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to modulate uterine inflammatory response and evaluate the effect of corticosteroid therapy on fertility, 90 cycles of 45 mares were used for artificial insemination with frozen semen, using three different protocols: G1 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma; G2 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + corticosteroid therapy; G3 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma + corticosteroid therapy. Corticosteroid therapy consisted on one administration of prednisolone acetate (0.1 mg/Kg - Predef (R)) when mares presented 35mm follicles and uterine edema, concomitantly with the unique dose of hCG (human chorionic gonadotropin), then repeated each 12 hours until ovulation. on first fertility trial, with normal mares, there was no difference between control and treated groups (p>0.05), using seminal plasma associated with corticosteroid therapy (40 vs. 38%, respectively) or corticosteroid therapy alone (40 vs. 45% respectively). The second fertility trial, performed with mares with previous history of post-insemination endometritis, demonstrated a significant increase of pregnancy rate when mares were submitted to corticosteroid therapy (0.0 vs. 64.5%, respectively; p<0.05). Corticosteroid therapy was shown to be safe, with no physical or reproductive alterations on treated mares, demonstrating to be an adequate option to those animals with history of post-breeding or post-insemination endometritis. Further clinical research is necessary to confirm these results and contribute to the establishment of preventive therapy for cases of post-insemination endometritis.