964 resultados para Residue of kaolin
Resumo:
Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His(600). In the present work, the role of His(600) of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S(1) and S(1)`, specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His(600) residue makes important interactions with the substrate, supporting the prediction that His(600) moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both K(m) and k(cat), showing the importance of His(600) for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His(600) in TOP catalysis, transferring a proton to the newly generated NH(2)-terminus or helping Tyr(605) and/or Tyr(612) in the intermediate oxyanion stabilization. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Hemopressin (Hp), a 9-residue alpha-hemoglobin-derived peptide, was previously reported to function as a CB(1) cannabinoid receptor antagonist (1). In this study, we report that mass spectrometry (MS) data from peptidomics analyses of mouse brain extracts identified N-terminally extended forms of Hp containing either three (RVD-Hp alpha) or two (VD-Hp alpha) additional amino acids, as well as a beta-hemoglobinderived peptide with sequence similarity to that of hemopressin (VD-Hp beta). Characterization of the alpha-hemoglobin-derived peptides using binding and functional assays shows that in contrast to Hp, which functions as a CB(1) cannabinoid receptor antagonist, both RVD-Hp alpha and VD-Hp alpha function as agonists. Studies examining the increase in the phosphorylation of ERK1/2 levels or release of intracellular Ca(2+) indicate that these peptides activate a signal transduction pathway distinct from that activated by the endo-cannabinoid, 2-arachidonoylglycerol, or the classic CB(1) agonist, Hu-210. This finding suggests an additional mode of regulation of endogenous cannabinoid receptor activity. Taken together, these results suggest that the CB(1) receptor is involved in the integration of signals from both lipid-and peptide-derived signaling molecules.-Gomes, I., Grushko, J. S., Golebiewska, U., Hoogendoorn, S., Gupta, A., Heimann, A. S., Ferro, E. S., Scarlata, S., Fricker, L. D., Devi, L. A. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J. 23, 3020-3029 (2009). www.fasebj.org
Resumo:
The cold shock protein (CSP) family includes small polypeptides that are induced upon temperature downshift and stationary phase. The genome of the alphaproteobacterium Caulobacter crescentus encodes four CSPs, with two being induced by cold shock and two at the onset of stationary phase. In order to identify the environmental signals and cell factors that are involved in cspD expression at stationary phase, we have analyzed cspD transcription during growth under several nutrient conditions. The results showed that expression of cspD was affected by the medium composition and was inversely proportional to the growth rate. The maximum levels of expression were decreased in a spoT mutant, indicating that ppGpp may be involved in the signalization for carbon starvation induction of cspD. A Tn5 mutant library was screened for mutants with reduced cspD expression, and 10 clones that showed at least a 50% reduction in expression were identified. Among these, a strain with a transposon insertion into a response regulator of a two-component system showed no induction of cspD at stationary phase. This protein (SpdR) was able to acquire a phosphate group from its cognate histidine kinase, and gel mobility shift assay and DNase I footprinting experiments showed that it binds to an inverted repeat sequence of the cspD regulatory region. A mutated SpdR with a substitution of the conserved aspartyl residue that is the probable phosphorylation site is unable to bind to the cspD regulatory region and to complement the spdR mutant phenotype.
Resumo:
The eukaryotic translation initiation factor 5A (eIF5A) contains a special amino acid residue named hypusine that is required for its activity, being produced by a post-translational modification using spermidine as substrate. Stem cells from rat skeletal muscles (satellite cells) were submitted to differentiation and an increase of eIF5A gene expression was observed. Higher content of eIF5A protein was found in satellite cells on differentiation in comparison to non-differentiated satellite cells and skeletal muscle. The treatment with NI-guanyl- 1,7-diaminoheptane (GC7), a hypusination inhibitor, reversibly abolished the differentiation process. In association with the differentiation blockage, an increase of glucose consumption and lactate production and a decrease of glucose and palmitic acid oxidation were observed. A reduction in cell proliferation and protein synthesis was also observed. L-Arginine, a spermidine precursor and partial suppressor of muscle dystrophic phenotype, partially abolished the GC7 inhibitory effect on satellite cell differentiation. These results reveal a new physiological role for eIF5A and contribute to elucidate the molecular mechanisms involved in muscle regeneration.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.
Resumo:
Bothropasin is a 48 kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys(189) is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from I`ll SVMPs. The ECD motif is stabilized by the Cys(117)_Cys(310) disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu(276) of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other Pill SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other Pill members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (k(cat)/K-m) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in k(cat), but not due to variations in K-m, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pK(a) of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pK(a). Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal alpha-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins - eIF5A(K56A) and eIF5A(Q22H,L93F)- and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression.
Resumo:
Tuberculosis (TB) is a major cause of morbidity and mortality throughout the world, and it is estimated that one-third of the world`s population is infected with Mycobacterium tuberculosis. Among a series of tested compounds, we have recently identified five synthetic chalcones which inhibit the activity of M. tuberculosis protein tyrosine phosphatase A (PtpA), an enzyme associated with M. tuberculosis infectivity. Kinetic studies demonstrated that these compounds are reversible competitive inhibitors. In this work we also carried out the analysis of the molecular recognition of these inhibitors on their macromolecular target, PtpA, through molecular modeling. We observed that the predominant determinants responsible for the inhibitory activity of the chalcones are the positions of the two methoxyl groups at the A-ring, that establish hydrogen bonds with the amino acid residues Arg17, His49, and Thr12 in the active site of PtpA, and the substitution of the phenyl ring for a 2-naphthyl group as B-ring, that undergoes p stacking hydrophobic interaction with the Trp48 residue from PtpA. Interestingly, reduction of mycobacterial survival in human macrophages upon inhibitor treatment suggests their potential use as novel therapeutics. The biological activity, synthetic versatility, and low cost are clear advantages of this new class of potential tuberculostatic agents. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
1,3-beta-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal beta-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 degrees C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
The Jaguarao stratoid dacites (Rio Grande do Sul, Brazil) are limited in areal extent, are comprised of about 3.2 km(3) of preserved erupted material, and outcrop only in areas of the region underlain by mylonitic and ultramylonitic rocks. They are S-type volcanic rocks containing cordierite, orthopyroxene, plagioclase, and ilmenite as liquidus phases, and partially melted granite, gneiss, and migmatite enclaves that are very similar to the Precambrian basement rocks. The Jaguarao lavas have distinct geochemical signatures and Sr-Nd isotopes with respect to other volcanic rocks of the region. Available geochronological data for Jaguarao dacites range between 157 +/- 5 Ma and 139.6 +/- 7.4 Ma. Considering the errors, the younger ages obtained for Jaguarao lavas overlap the 138-128 Ma age of rocks of the Serra Geral Group, and thus indicate that the dacites were erupted prior to the break-up of Gondwana in this region. Petrographic, mineralogical, and petrochemical data, as well as the tectonic context of the Jaguarao lavas, suggest that magma genesis was linked, at least in part, to friction melts. The dacitic magma was generated by partial melting reactions involving biotite breakdown in a dominantly quartz-feldspathic source terrane, leaving a granulite facies residue in subsurface. These melts were probably generated as a consequence of crustal thinning linked to simple shear extension just prior to Gondwana break-up and rifting of the southern Atlantic Ocean. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Background: JC virus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), is classified in 8 different genotypes. Previous reports have suggested a positive association between specific genotypes and PML. Objective: To compare genotypes and adaptive mutations of JCV strains from Brazilian AIDS patients with and without PML. Study design: The VP1 region of JCV was amplified by polymerase chain reaction from cerebrospinal fluid samples from 51 patients with PML and from urine samples of 47 patients with AIDS without central nervous system disease. Genotyping was done by phylogenetic analysis. Amino acid replacement and selection pressures were also investigated. Results: JCV genotype frequency distributions showed that genotypes 2 (32.7%), 1 (26.5%) and 3 (23.5%) were the most prevalent. Genotype 1 had a positive association (p < 0.0001) and genotype 3 showed an inverse association (p < 0.001) with PML. A previously undescribed point mutation at residue 91 (L/I or L/V) and (L/P), non-genotype-associated, was found in 5/49 (10.2%) and 2/47 (4.3%) JCV sequences from PML and non-PML patients, respectively. This mutation was under positive selection only in PML patients. A previously described substitution of T-A in position 128 showed a significant difference between PML and non-PML cases (70% versus 16%, respectively, p < 0.0005). Conclusion: In Brazilian patients with AIDS, JCV genotype 1 showed a strong association with PML (p < 0.0001) and JCV genotype 3 showed an inverse association with PML. The possible association of aminoacids substitution in residues 91 and 128 with PML in patients with AIDS must be further investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The extracytoplasmic function sigma factor sigma(T) is the master regulator of general stress response in Caulobacter crescentus and controls the expression of its paralogue sigma(U). In this work we showed that PhyR and NepR act, respectively, as positive and negative regulators of sigma(T) expression and function. Biochemical data also demonstrated that NepR directly binds sigma(T) and the phosphorylated form of PhyR. We also described the essential role of the histidine kinase gene CC3474, here denominated phyK, for expression of sigma(T)-dependent genes and for resistance to stress conditions. Additionally, in vivo evidence of PhyK-dependent phosphorylation of PhyR is presented. This study also identified a conserved cysteine residue (C95) located in the periplasmic portion of PhyK that is crucial for the function of the protein. Furthermore, we showed that PhyK, PhyR and sigma(T) regulate the same set of genes and that sigma(T) apparently directly controls most of its regulon. In contrast, sigma(U) seems to have a very modest contribution to the expression of a subset of sigma(T)-dependent genes. In conclusion, this report describes the molecular mechanism involved in the control of general stress response in C. crescentus.
Resumo:
DD K is an antimicrobial peptide previously isolated from the skin of the amphibian Phyllomedusa distincta. The effect of cholesterol on synthetic DD K binding to egg lecithin liposomes was investigated by intrinsic fluorescence of tryptophan residue, measurements of kinetics of 5(6)-carboxyfluorescein (CF) leakage, dynamic light scattering and isothermal titration microcalorimetry. An 8 nm blue shift of tryptophan maximum emission fluorescence was observed when DD K was in the presence of lecithin liposomes compared to the value observed for liposomes containing 43 mol% cholesterol. The rate and the extent of CF release were also significantly reduced by the presence of cholesterol. Dynamic light scattering showed that lecithin liposome size increase from 115 to 140 nm when titrated with DD K but addition of cholesterol reduces the liposome size increments. Isothermal titration microcalorimetry studies showed that DD K binding both to liposomes containing cholesterol as to liposomes devoid of it is more entropically than enthalpically favored. Nevertheless, the peptide concentration necessary to furnish an adjustable titration curve is much higher for liposomes containing cholesterol at 43 mol% (2 mmol L-1) than in its absence (93 mu mol L-1). Apparent binding constant values were 2160 and 10,000 L mol(-1), respectively. The whole data indicate that DD K binding to phosphatidylcholine liposomes is significantly affected by cholesterol, which contributes to explain the low hemolytic activity of the peptide. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Trehalase (EC 3.2.1.28) hydrolyzes only alpha, alpha`- trehalose and is present in a variety of organisms, but is most important in insects and fungi. Crystallographic data showed that bacterial trehalase has 0312 and E496 as the catalytical residues and three Arg residues in the active site. Those residues have homologous in all family 37 trehalases including Spodoptera frugiperda trehalase (0322, E520, R169, R227, R287). To test the role of these residues, mutants of trehalase were produced. All mutants were at least four orders of magnitude less active than wild type trehalase and no structural difference between these mutants and wild type enzyme were discernible by circular dichroism. D322A and E520 pH-activity profile lacked the alkaline arm and the acid arm, respectively, suggesting that D322 is the acid and E520 the basic catalyst. Azide increases E520A activity three times, confirming its action as the basic catalyst. Taking into account the decrease in activity after substitution for alanine residue, the three arginine residues are as important as the catalytical ones to trehalase activity. This clarifies the previous misidentification of an Arg residue as the acid catalyst. As far as we know, this is the first report on the functional identification residues important for trehalase activity. (C) 2010 Elsevier Ltd. All rights reserved.