970 resultados para Reproductive biology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In species with indeterminate growth, age-related size variation of reproductive competitors within each sex is often high. This selects for divergence in reproductive tactics of same-sex competitors, particularly in males. Where alternative tactics are fixed for life, the causality of tactic choice is often unclear. In the African cichlid Lamprologus callipterus, large nest males collect and present empty snail shells to females that use these shells for egg deposition and brood care. Small dwarf males attempt to fertilize eggs by entering shells in which females are spawning. The bourgeois nest males exceed parasitic dwarf males in size by nearly two orders of magnitude, which is likely to result from greatly diverging growth patterns. Here, we ask whether growth patterns are heritable in this species, or whether and to which extent they are determined by environmental factors. Standardized breeding experiments using unrelated offspring and maternal half-sibs revealed highly divergent growth patterns of male young sired by nest or dwarf males, whereas the growth of female offspring of both male types did not differ. As expected, food had a significant modifying effect on growth, but neither the quantity of breeding substrate in the environment nor ambient temperature affected growth. None of the environmental factors tested influenced the choice of male life histories. We conclude that in L. callipterus growth rates of bourgeois and parasitic males are paternally inherited, and that male and female growth is phenotypically plastic to only a small degree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neonatal estrogen treatment of BALB/c mice results in the unregulated proliferation of the cervicovaginal epithelium and eventually tumorigenesis. The conversion of the normally estrogen responsive cyclic proliferation of the vaginal epithelium to a continuous estrogen-independent pattern of growth is a complex phenomenon. The aim of this study was to gain an understanding of the mechanism(s) by which steroid hormone administration during a critical period of development alters the cyclic proliferation of vaginal epithelium, ultimately leading to carcinogenesis in the adult animal.^ The LJ6195 murine cervicovaginal tumor was induced by treating newborn female BALB/c mice with 20 $\mu$g 17$\beta$-estradiol plus 100 $\mu$g progesterone for the first 5 days after birth. In contrast to proliferation of the normal vaginal epithelium, proliferation of LJ6195 is not regulated by estradiol. Northern blot analysis of RNA from vaginal tracts of normal mice, neonatal-estrogen treated mice, and LJ6195 indicate that there is an alteration in the expression of several genes such as the estrogen receptor, c-fos, and HER2/neu. In response to neonatal estrogen treatment, the estrogen receptor is down regulated in the murine vaginal tract. Therefore, the estrogen-independent nature of this tissue is established as early as 3 months after treatment. There is strong evidence that the proliferation of LJ6195 is regulated through an autocrine growth pathway. The LJ6195 tumor expresses mRNA for the epidermal growth factor receptor. In addition, conditioned medium from the LJ6195 tumor cell line contains a growth factor(s) with epidermal growth factor-like activity. Conditioned medium from the LJ6195 cell line stimulated the proliferation of the EGF-dependent COMMA D mouse mammary gland cell line in a dose-dependent manner. The addition of an anti-mEGF-antibody to LJ6195 cell cultures significantly decreased growth. These results suggest that the EGF-receptor mediated growth pathway may play a role in regulating the estrogen-independent proliferation of the LJ6195 tumor. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deceptive Iris lutescens (Iridaceae) shows a heritable and striking flower colour polymorphism, with both yellow- and purple-flowered individuals growing sympatrically. Deceptive species with flower colour polymorphism are mainly described in the family Orchidaceae and rarely found in other families. To explain the maintenance of flower colour polymorphism in I.lutescens, we investigated female reproductive success in natural populations of southern France, at both population and local scales (within populations). Female reproductive success was positively correlated with yellow morph frequency, at both the population scale and the local scale. Therefore, we failed to observe negative frequency-dependent selection (NFDS), a mechanism commonly invoked to explain flower colour polymorphism in deceptive plant species. Flower size and local flower density could also affect female reproductive success in natural populations. Pollinator behaviour could explain the positive effect of the yellow morph, and our results suggest that flower colour polymorphism might not persist in I.lutescens, but alternative explanations not linked to pollinator behaviour are discussed. In particular, NFDS, although an appealingly simple explanation previously demonstrated in orchids, may not always contribute to maintaining flower colour polymorphism, even in deceptive species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS Children conceived by assisted reproductive technology (ART) display vascular dysfunction. Its underlying mechanism, potential reversibility and long-term consequences for cardiovascular risk are unknown. In mice, ART induces arterial hypertension and shortens the life span. These problems are related to decreased vascular endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. The aim of this study was to determine whether ART-induced vascular dysfunction in humans is related to a similar mechanism and potentially reversible. To this end we tested whether antioxidants improve endothelial function by scavenging free radicals and increasing NO bioavailability. METHODS AND RESULTS In this prospective double-blind placebo controlled study in 21 ART and 21 control children we assessed the effects of a four-week oral supplementation with antioxidant vitamins C (1 g) and E (400 IU) or placebo (allocation ratio 2:1) on flow-mediated vasodilation (FMD) of the brachial artery and pulmonary artery pressure (echocardiography) during high-altitude exposure (3454 m), a manoeuver known to facilitate the detection of pulmonary vascular dysfunction and to decrease NO bioavailability by stimulating oxidative stress. Antioxidant supplementation significantly increased plasma NO measured by ozone-based chemiluminescence (from 21.7 ± 7.9 to 26.9 ± 7.6 µM, p = 0.04) and FMD (from 7.0 ± 2.1 to 8.7 ± 2.0%, p = 0.004) and attenuated altitude-induced pulmonary hypertension (from 33 ± 8 to 28 ± 6 mm Hg, p = 0.028) in ART children, whereas it had no detectable effect in control children. CONCLUSIONS Antioxidant administration to ART children improved NO bioavailability and vascular responsiveness in the systemic and pulmonary circulation. Collectively, these findings indicate that in young individuals ART-induced vascular dysfunction is subject to redox regulation and reversible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological studies demonstrate a relationship between pathological events during foetal development and future cardiovascular risk and the term 'foetal programming of cardiovascular disease' has been coined to describe this phenomenon. The use of assisted reproductive technologies (ARTs) is growing exponentially and 2-5% of children are now born by this procedure. Emerging evidence indicates that ART represents a novel important example of foetal programming. Assisted reproductive technology may modify the cardiovascular phenotype in two ways: (i) ART involves manipulation of the early embryo which is exquisitely sensitive to environmental insults. In line with this concern, ART alters vascular and cardiac function in children and studies in mice show that ART alters the cardiovascular phenotype by epigenetic alterations related to suboptimal culture conditions. (ii) Assisted reproductive technology markedly increases the risk of foetal insults that augment cardiovascular risk in naturally conceived individuals and are expected to have similar consequences in the ART population. Given the young age of the ART population, it will take another 20-30 years before data on cardiovascular endpoints will be available. What is clear already, however, is that ART emerges as an important cardiovascular risk factor. This insight requires us to revise notions on ART's long-term safety and to engage on a debate on its future. There is an urgent need to better understand the mechanisms underpinning ART-induced alteration of the cardiovascular phenotype, improve the procedure and its long-term safety, and, while awaiting this aim, not to abandon medicine's fundamental principle of doing no harm (to future children) and use ART parsimoniously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assisted reproductive technologies (ART) predispose the offspring to vascular dysfunction, arterial hypertension, and hypoxic pulmonary hypertension. Recently, cardiac remodeling and dysfunction during fetal and early postnatal life have been reported in offspring of ART, but it is not known whether these cardiac alterations persist later in life and whether confounding factors contribute to this problem. We, therefore, assessed cardiac function and pulmonary artery pressure by echocardiography in 54 healthy children conceived by ART (mean age 11.5 ± 2.4 yr) and 54 age-matched (12.2 ± 2.3 yr) and sex-matched control children. Because ART is often associated with low birth weight and prematurity, two potential confounders associated with cardiac dysfunction, only singletons born with normal birth weight at term were studied. Moreover, because cardiac remodeling in infants conceived by ART was observed in utero, a situation associated with increased right heart load, we also assessed cardiac function during high-altitude exposure, a condition associated with hypoxic pulmonary hypertension-induced right ventricular overload. We found that, while at low altitude cardiac morphometry and function was not different between children conceived by ART and control children, under the stressful conditions of high-altitude-induced pressure overload and hypoxia, larger right ventricular end-diastolic area and diastolic dysfunction (evidenced by lower E-wave tissue Doppler velocity and A-wave tissue Doppler velocity of the lateral tricuspid annulus) were detectable in children and adolescents conceived by ART. In conclusion, right ventricular dysfunction persists in children and adolescents conceived by ART. These cardiac alterations appear to be related to ART per se rather than to low birth weight or prematurity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous genes expressed in placenta or testis localize to the X-chromosome. Both tissues undergo specialized X-chromosome inactivation (imprinted paternal inactivation in placenta and MSCI in testicular germ cells). When the X-chromosome is duplicated or improperly inactivated, defects in placentation, growth and spermatogenesis are noted, suggesting tight control of X-chromosome gene dosage is important for reproduction. ^ Esx1 is a mouse homeobox gene on the X-chromosome with expression limited to extraembryonic tissues and testicular germ cells. Here, we examine the effects of increased and decreased Esx1 dosage on placental and testicular development, the role of genetic background on Esx1 function and characterize the human orthologue of Esx1. ^ Previously, by targeted deletion, Esx1 was shown to be an X-chromosome imprinted regulator of placental development and fetal growth. We show C57Bl6-congenic Esx1 mutants display a more severe phenotype with decreased viability and that the 129 genetic background contains dominant modifier genes that enhance Esx1 mutant survival. ^ Varying Esx1 dosage impacts testicular germ cell development. Esx1 hemizygous null mice are fertile, but we show their testes are two-thirds normal size. To examine the effect of increased Esx1 dosage, Esx1 BAC transgenic mice were generated. Increased Esx1 dosage results in dramatic deficits in testicular germ cell development, leading to sterility and testes one-fourth normal size. We show germ cell loss occurs through apoptosis, begins between postnatal day 6 and 10, and that no spermatocytes complete meiosis. Interestingly, increased Esx1 dosage in testes mimics germ cell loss seen in Klinefelter's (XXY) mice and humans and may represent a molecular mechanism for the infertility characteristic of this syndrome. ^ Esx1 dosage impacts reproductive fitness when maternally transmitted. Three transgenic founder females were unable to transmit the transgene to live offspring, but did produce transgenic pups at earlier stages. Additionally, one line of Esx1 BAC transgenic mice demonstrated decreased embryo size and fitness when the transgene is inherited compared to wild type littermates. ^ It is possible that Esx1 plays a role in human disorders of pregnancy, growth and spermatogenesis. Therefore, we cloned and characterized ESX1L (human Esx1), and show it is expressed in human testis and placenta. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regardless of genetic sex, amniotes develop two sets of genital ducts, the Wolffian and Müllerian ducts. Normal sexual development requires the differentiation of one duct and the regression of the other. I show that cells in the rostral most region of the coelomic epithelium (CE) are specified to a Müllerian duct fate beginning at Tail Somite Stage 19 (TS19). The Müllerian duct (MD) invaginates from the CE where it extends caudally to and reaches the Wolffian duct (WD) by TS22. Upon contact, the MD elongates to the urogenital sinus separating the WD from the CE and its formation is complete by TS34. During its elongation, the MD is associated with and dependent upon the WD and I have identified the mechanism for MD elongation. Using the Rosa26 reporter to fate map the WD, I show that the WD does not contribute cells to the MD. Using an in vitro recombinant explant culture assay I show that the entire length of the MD is derived from the CE. Furthermore, I analyzed cell proliferation and developed an in vitro assay to show that a small population of cells at the caudal tip proliferates, laying the foundation for the formation of the MD. I also show that during its formation, the MD has a distinctive mesoepithelial character. The MD in males regresses under the influence of Anti-Müllerian Hormone (AMH). Through tissue-specific gene inactivation I have identified that Acvr1 and Bmpr1a and Smad1, Smad5 and Smad8 function redundantly in transducing the AMH signal. In females the MD differentiates into an epithelial tube and eventually the female reproductive tract. However, the exact tissue into which the MD differentiates has not been determined. I therefore generated a MD specific Cre allele that will allow for the fate mapping of the MD in both females males. The MD utilizes a unique form of tubulogenesis during development and to my knowledge is the only tubule that relies upon a signal from and the presence of another distinct epithelial tube for its formation.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the maritime Antarctic, brown skuas (Catharacta antarctica lonnbergi) show two foraging strategies: some pairs occupy feeding territories in penguin colonies, while others can only feed in unoccupied areas of a penguin colony without defending a feeding territory. One-third of the studied breeding skua population in the South Shetlands occupied territories of varying size (48 to >3,000 penguin nests) and monopolised 93% of all penguin nests in sub-colonies. Skuas without feeding territories foraged in only 7% of penguin sub-colonies and in part of the main colony. Females owning feeding territories were larger in body size than females without feeding territories; no differences in size were found in males. Territory holders permanently controlled their resources but defence power diminished towards the end of the reproductive season. Territory ownership guaranteed sufficient food supply and led to a 5.5 days earlier egg-laying and chick-hatching. Short distances between nest and foraging site allowed territorial pairs a higher nest-attendance rate such that their chicks survived better (71%) than chicks from skua pairs without feeding territories (45%). Due to lower hatching success in territorial pairs, no difference in breeding success of pairs with and without feeding territories was found in 3 years. We conclude that skuas owning feeding territories in penguin colonies benefit from the predictable and stable food resource by an earlier termination of the annual breeding cycle and higher offspring survivorship.