970 resultados para Reproductive Strategies
Resumo:
This paper assesses the costs and benefits of a proposed project for restocking sandfish (Holothuria scabra) in Khanh Hoa Province, Vietnam. It identifies the key stakeholders, institutional framework, management and financing required for its implementation. The recommended management strategy includes a 50 percent harvest at optimum size. Limiting the number of boats fishing an area, possibly through licensing, can control the number of sandfish removed. The easiest way to prevent harvesting of undersized sandfish is to control the size of processed sandfish from processors. The potential benefits of restocking are shown by the rapid changes in selected indicators, particularly the net present value, the internal rate of return, and the benefit-cost ratio. Probability analysis is used to estimate the uncertainties in the project calculations. Based on a conservative estimate, the restocking of sandfish is expected to be profitable, although cost-benefit analyses are sensitive to the survival of restocked sandfish and their progeny, and the number of boats fishing for sandfish in the release area.
Resumo:
Survey- and fishery-derived biomass estimates have indicated that the harvest indices for Pacific cod (Gadus macrocephalus) within a portion of Steller sea lion (Eumetopias jubatus) critical habitat in February and March 2001 were five to 16 times greater than the annual rate for the entire Bering Sea-Aleutian Islands stock. A bottom trawl survey yielded a cod biomass estimate of 49,032 metric tons (t) for the entire area surveyed, of which less than half (23,329 t) was located within the area used primarily by the commercial fishery, which caught 11,631 t of Pacific cod. Leslie depletion analyses of fishery data yielded biomass estimates of approximately 14,500 t (95% confidence intervals of approximately 9,000–25,000 t), which are within the 95% confidence interval on the fished area survey estimate (12,846–33,812 t). These data indicate that Leslie analyses may be useful in estimating local fish biomass and harvest indices for certain marine fisheries that are well constrained spatially and relatively short in duration (weeks). In addition, fishery effects on prey availability within the time and space scales relevant to foraging sea lions may be much greater than the effects indicated by annual harvest rates estimated from stock assessments averaged across the range of the target spec
Resumo:
The thorny skate (Amblyraja radiata) is a large species of skate that is endemic to the waters of the western north Atlantic in the Gulf of Maine. Because the biomass of thorny skates has recently declined below threshold levels mandated by the Sustainable Fisheries Act, commercial harvests from this region are prohibited. We have undertaken a comprehensive study to gain insight into the life history of this skate. The present study describes and characterizes the reproductive cycle of female and male thorny skates, based on monthly samples taken off the coast of New Hampshire, from May 2001 to May 2003. Gonadosomatic index (GSI), shell gland weight, follicle size, and egg case formation, were assessed for 48 female skates. In general, these reproductive parameters remained relatively constant throughout most of the year. However, transient but significant increases in shell gland weight and GSI were obser ved during certain months. Within the cohort of specimens sampled monthly throughout the year, a subset of females always had large preovulatory follicles present in their ovaries. With the exception of June and September specimens, egg cases undergoing various stages of development were observed in the uteri of specimens captured during all other months of the year. For males (n=48), histological stages III through VI (SIII−SVI) of spermatogenesis, GSI, and hepatosomatic index (HSI) were examined. Although there appeared to be monthly fluctuations in spermatogenesis, GSI, and HSI, no significant differences were found. The production and maintenance of mature spermatocysts (SVI) within the testes was observed throughout the year. These findings collectively indicate that the thorny skate is reproductively active year round.
Resumo:
Predicting and under-standing the dynamics of a population requires knowledge of vital rates such as survival, growth, and reproduction. However, these variables are influenced by individual behavior, and when managing exploited populations, it is now generally realized that knowledge of a species’ behavior and life history strategies is required. However, predicting and understanding a response to novel conditions—such as increased fishing-induced mortality, changes in environmental conditions, or specific management strategies—also require knowing the endogenous or exogenous cues that induce phenotypic changes and knowing whether these behaviors and life history patterns are plastic. Although a wide variety of patterns of sex change have been observed in the wild, it is not known how the specific sex-change rule and cues that induce sex change affect stock dynamics. Using an individual based model, we examined the effect of the sex-change rule on the predicted stock dynamics, the effect of mating group size, and the performance of traditional spawning-per-recruit (SPR) measures in a protogynous stock. We considered four different patterns of sex change in which the probability of sex change is determined by 1) the absolute size of the individual, 2) the relative length of individuals at the mating site, 3) the frequency of smaller individuals at the mating site, and 4) expected reproductive success. All four pat-terns of sex change have distinct stock dynamics. Although each sex-change rule leads to the prediction that the stock will be sensitive to the size-selective fishing pattern and may crash if too many reproductive size classes are fished, the performance of traditional spawning-per-recruit measures, the fishing pattern that leads to the greatest yield, and the effect of mating group size all differ distinctly for the four sex-change rules. These results indicate that the management of individual species requires knowledge of whether sex change occurs, as well as an understanding of the endogenous or exogenous cues that induce sex change.
Resumo:
The carpenter seabream (Argyrozona argyrozona) is an endemic South African sparid that comprises an important part of the handline fishery. A three-year study (1998−2000) into its reproductive biology within the Tsitsikamma National Park revealed that these fishes are serial spawning late gonochorists. The size at 50% maturity (L50) was estimated at 292 and 297 mm FL for both females and males, respectively. A likelihood ratio test revealed that there was no significant difference between male and female L50 (P>0.5). Both monthly gonadosomatic indices and macroscopically determined ovarian stages strongly indicate that A. argyrozona within the Tsitsikamma National Park spawn in the astral summer between November and April. The presence of postovulatory follicles (POFs) confirmed a six-month spawning season, and monthly proportions of early (0−6 hour old) POFs showed that spawning frequency was highest (once every 1−2 days) from December to March. Although spawning season was more highly correlated to photoperiod (r = 0.859) than temperature (r = −0.161), the daily proportion of spawning fish was strongly correlated (r= 0.93) to ambient temperature over the range 9−22oC. These results indicate that short-term upwelling events, a strong feature in the Tsitsikamma National Park during summer, may negatively affect carpenter fecundity. Both spawning frequency and duration (i.e., length of spawning season) increased with fish length. As a result of the allometric relationship between annual fecundity and fish mass a 3-kg fish was calculated to produce fivefold more eggs per kilogram of body weight than a fish of 1 kg. In addition to producing more eggs per unit of weight each year, larger fish also produce significantly larger eggs.
Resumo:
The narrow-barred Spanish mackerel (Scomberomorus commerson) is widespread throughout the Indo-West Pacific region. This study describes the reproductive biology of S. commerson along the west coast of Australia, where it is targeted for food consumption and sports fishing. Development of testes occurred at a smaller body size than for ovaries, and more than 90% of males were sexually mature by the minimum legal length of 900 mm TL compared to 50% of females. Females dominated overall catches although sex ratios within daily catches vary considerably and females were rarely caught when spaw n ing. Scomberomorus commerson are seasonally abundant in coastal waters and most of the commercial catch is taken prior to the reproductive season. Spawning occurs between about August and November in the Kimberley region and between October and January in the Pilbara region. No spawning activity was recorded in the more southerly West Coast region, and only in the north Kimberley region were large numbers of fish with spawning gonads collected. Catches dropped to a minimum when spawning began in the Pilbara region, when fish became less abundant in inshore waters and inclement weather conditions limited fishing on still productive offshore reefs. Final maturation and ovulation of oocytes took place within a 24-hour period, and females spawned in the afternoon-evening every three days. A third of these spawning females released batches of eggs on consecutive days. Relationships between length, weight, and batch fecundity are presented.
Resumo:
Fish bioenergetics models estimate relationships between energy budgets and environmental and physiological variables. This study presents a generic rockfish (Sebastes) bioenergetics model and estimates energy consumption by northern California blue rockf ish (S. mystinus) under average (baseline) and El Niño conditions. Compared to males, female S. mystinus required more energy because they were larger and had greater reproductive costs. When El Niño conditions (warmer temperatures; lower growth, condition, and fecundity) were experienced every 3−7 years, energy consumption decreased on an individual and a per-recruit basis in relation to baseline conditions, but the decrease was minor (<4% at the individual scale, <7% at the per-recruit scale) compared to decreases in female egg production (12−19% at the individual scale, 15−23% at the per-recruit scale). When mortality in per-recruit models was increased by adding fishing, energy consumption in El Niño models grew more similar to that seen in the baseline model. However, egg production decreased significantly — an effect exacerbated by the frequency of El Niño events. Sensitivity analyses showed that energy consumption estimates were most sensitive to respiration parameters, energy density, and female fecundity, and that estimated consumption increased as parameter uncertainty increased. This model provides a means of understanding rockfish trophic ecology in the context of community structure and environmental change by synthesizing metabolic, demographic, and environmental information. Future research should focus on acquiring such information so that models like the bioenergetics model can be used to estimate the effect of climate change, community shifts, and different harvesting strategies on rockfish energy demands.
Resumo:
Since 1979, anglers along the U.S. Atlantic coast have landed by weight more bluefish, Pomatomus saltatrix, than any other marine species. A fishery management plan has been developed jointly by three fishery management councils and the Atlantic States Marine Fisheries Commission to preserve the bluefish resource. Major objectives of the plan include prevention of recruitment overfishing and reduction in waste of bluefish. In 1985, a Federal survey found PCB concentrations in larger bluefish (over 500 mm fork length) that exceeded the U.S. Food and Drug Administration tolerance level of 2 parts per million. Harvest strategies are presented in this article to protect the reproductive capability of bluefish while minimizing human health risks associated with dietary intake of PCB's.