925 resultados para Repression
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity.
Resumo:
Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.
Resumo:
The serine protease inhibitor SerpinB2 (PAI-2), a major product of differentiating squamous epithelial cells, has recently been shown to bind and protect the retinoblastoma protein (Rb) from degradation. In human papillomavirus type 18 (HPV-18) -transformed epithelial cells the expression of the E6 and E7 oncoproteins is controlled by the HPV-18 upstream regulatory region (URR). Here we illustrate that PAI-2 expression in the HPV-18-transformed cervical carcinoma line HeLa resulted in the restoration of Rb expression, which led to the functional silencing of transcription from the HPV-18 URR. This caused loss of E7 protein expression and restoration of multiple E6- and E7-targeted host proteins, including p53, c-Myc, and c-Jun. Rb expression emerged as sufficient for the transcriptional repression of the URR, with repression mediated via the C/EB beta-YY1 binding site (URR 7709 to 7719). In contrast to HeLa cells, where the C/EBP beta-YY1 dimer binds this site, in PAI-2- and/or Rb-expressing cells the site was occupied by the dominant-negative C/EBP beta isoform liver-enriched transcriptional inhibitory protein (LIP). PAI-2 expression thus has a potent suppressive effect on HPV-18 oncogene transcription mediated by Rb and LIP, a finding with potential implications for prognosis and treatment of HPV-transformed lesions.
Resumo:
Prostate-specific antigen (PSA) and the related kallikrein family of serine proteases are current or emerging biomarkers for prostate cancer detection and progression. Kallikrein 4 (KLK4/hK4) is of particular interest, as KLK4 mRNA has been shown to be elevated in prostate cancer. In this study, we now show that the comparative expression of hK4 protein in prostate cancer tissues, compared with benign glands, is greater than that of PSA and kallikrein 2 (KLK2/hK2), suggesting that hK4 may play an important functional role in prostate cancer progression in addition to its biomarker potential. To examine the roles that hK4, as well as PSA and hK2, play in processes associated with progression, these kallikreins were separately transfected into the PC-3 prostate cancer cell line, and the consequence of their stable transfection was investigated. PC-3 cells expressing hK4 had a decreased growth rate, but no changes in cell proliferation were observed in the cells expressing PSA or hK2. hK4 and PSA, but not hK2, induced a 2.4-fold and 1.7-fold respective increase, in cellular migration, but not invasion, through Matrigel, a synthetic extracellular matrix. We hypothesised that this increase in motility displayed by the hK4 and PSA-expressing PC-3 cells may be related to the observed change in structure in these cells from a typical rounded epithelial-like cell to a spindle-shaped, more mesenchymal-like cell, with compromised adhesion to the culture surface. Thus, the expression of E-cadherin and vimentin, both associated with an epithelial-mesenchymal transition (EMT), was investigated. E-cadherin protein was lost and mRNA levels were significantly decreased in PC-3 cells expressing hK4 and PSA (10-fold and 7-fold respectively), suggesting transcriptional repression of E-cadherin, while the expression of vimentin was increased in these cells. The loss of E-cadherin and associated increase in vimentin are indicative of EMT and provides compelling evidence that hK4, in particular, and PSA have a functional role in the progression of prostate cancer through their promotion of tumour cell migration.
Resumo:
Infection of molluscs by digenean trematode parasites typically results in the repression of reproduction - the so-called parasitic castration. This is known to occur by altering the expression of a range of host neuropeptide genes. Here we analyse the expression levels of 10 members of POU, Pax, Sox and Hox transcription factor gene families, along with genes encoding FNIRFamide, prohormone convertase and P-tubulin, in the brain ganglia of actively reproducing (summer), non-reproducing (winter) and infected Haliotis asinina (a vetigastropod mollusc). A number of the regulatory genes are differentially expressed in parasitised H. asinina, but in only a few cases do expression patterns in infected animals match those occurring in animals where reproduction is normally repressed. (c) 2006 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.
Resumo:
The chicken ovalbumin upstream promoter-transcription factors ( COUP-TFs) are orphan members of the nuclear hormone receptor ( NR) superfamily. COUP-TFs are involved in organogenesis and neurogenesis. However, their role in skeletal muscle ( and other major mass tissues) and metabolism remains obscure. Skeletal muscle accounts for similar to 40% of total body mass and energy expenditure. Moreover, this peripheral tissue is a primary site of glucose and fatty acid utilization. We utilize small interfering RNA ( siRNA)-mediated attenuation of Coup-TfI and II ( mRNA and protein) in a skeletal muscle cell culture model to understand the regulatory role of Coup-Tfs in this energy demanding tissue. This targeted NR repression resulted in the significant attenuation of genes that regulate lipid mobilization and utilization ( including Ppar alpha, Fabp3, and Cpt-1). This was coupled to reduced fatty acid beta-oxidation. Additionally we observed significant attenuation of Ucp1, a gene involved in energy expenditure. Concordantly, we observed a 5-fold increase in ATP levels in cells with siRNA-mediated repression of Coup-TfI and II. Furthermore, the expression of classical liver X receptor ( LXR) target genes involved in reverse cholesterol transport ( Abca1 and Abcg1) were both significantly repressed. Moreover, we observed that repression of the Coup-Tfs ablated the activation of Abca1, and Abcg1 mRNA expression by the selective LXR agonist, T0901317. In concordance, Coup-Tf-siRNA-transfected cells were refractory to Lxr-mediated reduction of total intracellular cholesterol levels in contrast to the negative control cells. In agreement Lxr-mediated activation of the Abca1 promoter in Coup-Tf-siRNA cells was attenuated. Collectively, these data suggest a pivotal role for Coup-Tfs in the regulation of lipid utilization/cholesterol homeostasis in skeletal muscle cells and the modulation of Lxr-dependent gene regulation.
Resumo:
RNA interference (RNAi) is widely used to silence genes in plants and animals. it operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway.
Resumo:
Despite wide application of cellulose-azure as a substrate for measuring cellulase activity, there is no quantification of hydrolysis rate or enzymatic activities using this substrate. The aim of this study was to quantify the hydrolysis rate in terms of product formation and dye released using cellulose-azure. The amount of dye released was correlated with the production of glucose and the enzyme concentrations. It is shown that the lack of correlation can be due to (1) repression of the release of the azure-dye when azure-dye accumulates, (2) presence of degradable substrates in the cellulase powder which inflate the glucose measurements and (3) the degradation of cellulose which is not linked to the dye in the cellulose-azure. Based on the lack of correlation, it is recommended that cellulose-azure should only be applied in assays when the aim is to compare relative activities of different enzymatic systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Vernalization, the acceleration of flowering by the prolonged cold of winter, ensures that plants flower in favorable spring conditions. During vernalization in Arabidopsis, cold temperatures repress FLOWERING LOCUS C (FLC) expression [1,2] in a mechanism involving VERNALIZATION INSENSITIVE 3 (VIN3) [3], and this repression is epigenetically maintained by a Polycomb-like chromatin regulation involving VERNALIZATION 2 (VRN2), a Su(z)12 homolog, VERNALIZATION 1 (VRN1), and LIKE-HETEROCHROMATIN PROTEIN 1 [4,5,6,7,8]. In order to further elaborate how cold repression triggers epigenetic silencing, we have targeted mutations that result in FLC misexpression both at the end of the prolonged cold and after subsequent development. This identified VERNALIZATION 5 (VRN5), a PHD finger protein and homolog of VIN3. Our results suggest that during the prolonged cold, VRN5 and VIN3 forma heterodimer necessary for establishing the vernalization-induced chromatin modifications, histone deacetylation, and H3 lysine 27 trimethylation required for the epigenetic silencing of FLC. Double mutant and FLC misexpression analyses reveal additional VRN5 functions, both FLC-dependent and -independent, and indicate a spatial complexity to FLC epigenetic silencing with VRN5 acting as a common component in multiple pathways.
Resumo:
O presente estudo visa investigar a sexualidade na adolescência em suas inquietações e necessidades por meio do método de investigação clínica de abordagem psicanalítica de Enrique Pichon-Rivière, para se obter uma compreensão da psicodinâmica do grupo de adolescentes com enfoque operativo. Os objetivos são: 1. Levantamento do que os adolescentes pensam sobre sexualidade; 2. Discutir os principais conflitos vividos pelos adolescentes com relação à sexualidade e; 3. Analisar as formas de manifestações culturais dos adolescentes sobre a sexualidade. O procedimento inicial foi um levantamento bibliográfico sobre os temas: sexualidade, repressão, fantasias inconscientes e grupo com enfoque operativo. Os adolescentes de uma comunidade religiosa da metrópole de São Paulo foram os participantes. Realizaram-se 12 encontros grupais com enfoque operativo, utilizando-se a teoria e técnica dos grupos operativos de Pichon-Rivière. Houve um roteiro temático, que forneceram os conteúdos para cada encontro. Os temas revelaram sentimentos e reações emocionais dos adolescentes sobre sexualidade, dificuldades e facilidades encontradas em relação às manifestações culturais e a existência de conflitos (medos e desejos inconscientes) vividos pelos adolescentes. As análises dos resultados levaram a considerações que direcionam a duas vertentes: a) As inquietações representadas por dúvidas, sentimentos de perda, informações consistentes e medos; b) As necessidades estavam representadas pela lealdade, confiança, interação social, acolhimento (continência) e valores do grupo primário de referência. Conclui-se que o adolescente apresenta forte sentimento de desconfiança, caracterizando uma constelação de fantasias na qual predomina a persecutoriedade; esse adolescente está sempre preocupado com o externo, com o que os outros estão pensando
Resumo:
Många muslimska kvinnor utsatts för ett omfattande förtryck med våld som yttersta sanktion. Somliga skulle säga att alla muslimska kvinnor utsatts för förtryck. Återigen andra skule säga att överhuvudtaget alla kvinnor i majoriteten av världens kulturer i någon form är förtryckta. Debatten om kvinnors möjligheter och rättigheter har förts upp på den samhällspolitiska agendan och attraherar allt fler deltagare. I svensk samhällsdebatt ägnas den muslimska slöjan som symbol för repression ett relativt stort utrymme och engagerar människor på såväl akademisk, politisk som vardaglig nivå. Detta innefattar svenskar utan egna erfarenheter av utövande av islamiska påbud, svenska konvertiter utan erfarenheter av att leva i muslimska samhällen och muslimer vars erfarenheter har formatt dem att aktivt ta ställning mot slojan. I denna uppsats vill jag, utan normativa förtecken, låta två muslimska kvinnor med ett till synes mer positivt eller neutralt förhållande till slöjan komma till tals. Syftet ar att undersöka deras relation till slöjan och hur denna eventuellt förändras i en svensk kontext. Genom att ge kvinnornas berättelser om deras egen praktik och erfarenhet utrymme hoppas jälva och med andra informanter hade andra perspektiv på denna komplexa frågeställning hamnat i fokus.
Resumo:
BACKGROUND: We previously described the first respiratory Saccharomyces cerevisiae strain, KOY.TM6*P, by integrating the gene encoding a chimeric hexose transporter, Tm6*, into the genome of an hxt null yeast. Subsequently we transferred this respiratory phenotype in the presence of up to 50 g/L glucose to a yeast strain, V5 hxt1-7Delta, in which only HXT1-7 had been deleted. In this study, we compared the transcriptome of the resultant strain, V5.TM6*P, with that of its wild-type parent, V5, at different glucose concentrations. RESULTS: cDNA array analyses revealed that alterations in gene expression that occur when transitioning from a respiro-fermentative (V5) to a respiratory (V5.TM6*P) strain, are very similar to those in cells undergoing a diauxic shift. We also undertook an analysis of transcription factor binding sites in our dataset by examining previously-published biological data for Hap4 (in complex with Hap2, 3, 5), Cat8 and Mig1, and used this in combination with verified binding consensus sequences to identify genes likely to be regulated by one or more of these. Of the induced genes in our dataset, 77% had binding sites for the Hap complex, with 72% having at least two. In addition, 13% were found to have a binding site for Cat8 and 21% had a binding site for Mig1. Unexpectedly, both the up- and down-regulation of many of the genes in our dataset had a clear glucose dependence in the parent V5 strain that was not present in V5.TM6*P. This indicates that the relief of glucose repression is already operable at much higher glucose concentrations than is widely accepted and suggests that glucose sensing might occur inside the cell. CONCLUSION: Our dataset gives a remarkably complete view of the involvement of genes in the TCA cycle, glyoxylate cycle and respiratory chain in the expression of the phenotype of V5.TM6*P. Furthermore, 88% of the transcriptional response of the induced genes in our dataset can be related to the potential activities of just three proteins: Hap4, Cat8 and Mig1. Overall, our data support genetic remodelling in V5.TM6*P consistent with a respiratory metabolism which is insensitive to external glucose concentrations.
Resumo:
Saprolegia ssp. effectively utilized the protein casein as a sole source of carbon, nitrogen and sulphur, indicating considerable proteolytic activity. In the presence of a more simple carbon source such as glucose, which was readily assimilated, catabolite repression was not observed and casein exploitation was enhanced. Free proteinase activity was not detected by a number of methods, irrespective of culture conditions. However, clearing by mycelia of skimmed milk agar or agar amended with bacteria demonstrated a close association between proteinases and hyphae, suggestive of natural immobilization of proteinases. Casein breakdown was accompanied by release of individual amino acids and ammonia. The latter, indicative of amino acid assimilation and metabolism, was also associated with an increase in pH of culture medium. Single amino acids did not support growth of Saprolegnia but in combination with other amino acids, methionine encouraged greatest biomass production. Certain groupings of amino acids affected growth in a manner which departed from that expected, as assessed by multifactorial analysis of variance, and either enhanced or reduced growth.
Resumo:
Endogenous glucocorticoids and serotonin have been implicated in the pathophysiology of depression, anxiety and schizophrenia. This thesis investigates the potential of downregulating expression of central Type II glucocorticoid receptors (GR) both in vitro and in vivo, with empirically-designed antisense oligodeoxynucleotides (ODN), to characterise GR modulation of 5-HT2A receptor expression using quantitative RT-PCR, Western blot analysis and radioligand binding. The functional consequence of GR downregulation is also determined by measuring 1-(2,5-dimethoxy 4-iodophenyl)-2-amino propane hydrochloride (DOI) mediated 5-HT2A receptor specific headshakes. Using a library of random antisense ODN probes, RNAse H accessibility mapping of T7-primed, in vitro transcribed GR mRNA revealed several potential cleavage sites and identified an optimally effect GR antisense ODN sequence of 21-mer length (GRAS5). In vitro efficacy studies using rat C6 glioma cells showed a 56% downregulation in GR mRNA levels and 80% downregulation in GR protein levels. In the same cells a 29% upregulation in 5-HT2A mRNA levels and 32% upregulation in 5-HT2A protein levels was revealed. This confirmed the optimal nature of the GRAS5 sequence to produce marked inhibition of GR gene expression, and also revealed GR modulation of the 50-HT2A receptor subtype in C6 glioma cells to be a tonic repression of receptor expression. The distribution of a fluorescently-labelled GRAS5 ODN was detected in diverse areas of the rat brain after single ICV administration, although this fluorescence signal was not sustained over a period of 5 days. However, fluorescently-labelled GRAS5 ODN, when formulated in polymer microspheres, showed diverse distribution in the brain which was maintained for 5 days following a single ICV administration. This produced no apparent neurotoxic effects on rat behaviour and hypothalamic-pituitary-adrenal (HPA) axis homeostasis. Furthermore, a single polymer microsphere injection ICV proved to be an effective means of delivering antisense ODNs and this was adopted for the in vivo efficacy studies. In vivo characterisation of GRAS5 revealed marked downregulation of GR mRNA in rat brain regions such as the frontal cortex (26%), hippocampus (35%), and hypothalamus (39%). Downregulation of GR protein was also revealed in frontal cortex (67%), hippocampus (76%), and hypothalamus (80%). In the same animals upregulation of 5-HT2A mRNA levels was shown in frontal cortex (13%), hippocampus (7%), and hypothalamus (5%) while upregulation in 5-HT2A protein levels was shown in frontal cortex (21 %). This upregulation in 5-HT2A receptor density as a result of antisense-mediated inhibition of GR was further confirmed by a 55% increase in DOl-mediated 5-HT2A receptor specific headshakes. These results demonstrate that GR is involved in tonic inhibitory regulation of 5-HT2A receptor expression and function in vivo, thus providing the potential to control 5-HT2A-linked disorders through corticosteroid manipulation. These experiments have therefore established an antisense approach which can be used to investigate pharmacological characteristics of receptors.