884 resultados para Reduced Gravity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quadratic gravity in (2+1)D is nonunitarity at the tree level. When a topological Chern-Simons term is added to this theory, the harmless massive scalar mode of the former gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin-2. Therefore, unlike what it is claimed in the literature, quadratic Chern-Simons gravity in (2+1)D is nonunitary at the tree level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The teleparallel versions of the Einstein and the Landau-Lifshitz energy-momentum complexes of the gravitational field are obtained. By using these complexes, the total energy of the universe, which includes the energy of both the matter and the gravitational fields, is then obtained. It is shown that in the case of a closed universe, the total energy vanishes independently of the pseudotensor used, as well as of the three dimensionless coupling constants of teleparallel gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss modified gravity which includes negative and positive powers of curvature and provides gravitational dark energy. It is shown that in GR plus a term containing a negative power of curvature, cosmic speed-up may be achieved while the effective phantom phase (with w less than -1) follows when such a term contains a fractional positive power of curvature. Minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fluid may describe the (effective phantom) dark energy. The account of the R(2) term (consistent modified gravity) may help to escape cosmic doomsday.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross-section for the scattering of a photon by the Sun's gravitational field, treated as an external field, is computed in the framework of R + R-2 gravity. Using this result, we found that for a photon just grazing the Sun's surface the deflection is 1.75 which is exactly the same as that given by Einstein's theory. An explanation for this pseudo-paradox is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm for computing the propagator for three-dimensional quadratic gravity with a gravitational Chern-Simons term, based on an extension of the three-dimensional Barnes-Rivers operators, is proposed. A systematic study of the tree-level unitarity of this theory is developed and its agreement with Newton's law is investigated by computing the effective nonrelativistic potential. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stationary cosmological model without closed timelike curves of Godel type is obtained for the ideal dust matter source within the framework of the teleparallel gravity. For a specific choice of the teleparallel gravity parameters, this solution reproduces the causality violating stationary Godel solution in general relativity, in accordance with the teleparallel equivalent of general relativity. The relation between the axial-vector torsion and the cosmic vorticity is clarified. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of the teleparallel equivalent of general relativity, the Weitzenbock manifold is considered as the limit of a suitable sequence of discrete lattices composed of an increasing number of smaller and smaller simplices, where the interior of each simplex (Delaunay lattice) is assumed to be flat. The link lengths l between any pair of vertices serve as independent variables, so that torsion turns out to be localized in the two-dimensional hypersurfaces (dislocation triangle, or hinge) of the lattice. Assuming that a vector undergoes a dislocation in relation to its initial position as it is parallel transported along the perimeter of the dual lattice (Voronoi polygon), we obtain the discrete analogue of the teleparallel action, as well as the corresponding simplicial vacuum field equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of a topological Chern-Simons term to three-dimensional higher-derivative gravity is not a good therapy to cure the nonunitarity of the aforementioned theory. Moreover, R+R-2 gravity in (2+1)D, which is unitary at the tree level, becomes tree-level nonunitary when it is augmented by the abovementioned topological term. Therefore, unlike what is claimed in the literature, topological higher-derivative gravity in (2+1)D is not tree-level unitary and neither is topological three-dimensional R+R-2 gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scattering of photons by a static gravitational field, treated as an external field, is discussed in the context of gravity with higher derivatives. It is shown that the R-2 sector of the theory does not contribute to the photon scattering, whereas the R-mu nu(2) sector produces dispersive (energy-dependent) photon propagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher-derivative gravity in 2 + 1 dimensions is considered. The general solution of the linearized field equations in a three-dimensional version of the Teyssandier gauge is obtained, and from that the solution for a static pointlike source is found. The deflection of light rays is also analysed. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Massive gravity models in (2 + 1) dimensions, such as those obtained by adding to Einstein's gravity the usual Fierz-Pauli, or the more complicated Ricci scalar squared (R-2), terms, are tree level unitary. Interesting enough these seemingly harmless systems have their unitarity spoiled when they are augmented by a Chern-Simons term. Furthermore, if the massive topological term is added to R + R-munu(2) gravity, or to R + R-munu(2), + R-2 gravity (higher-derivative gravity), which are nonunitary at the tree level, the resulting models remain nonunitary. Therefore, unlike the common belief, as well as the claims in the literature, the coexistence between three-dimensional massive gravity models and massive topological terms is conflicting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the duality between the local Cartezian coordinates and the solutions of the Klein-Gordon equation to parametrize locally the spacetime in terms of wave functions and prepotentials. The components of metric, metric connection, curvature as well as the Einstein equation are given in this parametrization. We also discuss the local duality between coordinates and quantum fields and the metric in this later reparametrization. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the bending of light caused by a static gravitational field generated by a localized material source in the context of quadratic gravity. Our calculation shows that for light rays passing close to the Sun the deflection Phi lies in the interval 0 < < 1.75. A tree-level approach to the same issue tells us that the vacuum concerning quadratic gravity is a dispersive medium. Nom Phi is energy dependent and ranges from 0(+) to 1.75(-) arcsec.