943 resultados para Records as Topic
Resumo:
Central waters of the North Atlantic are fundamental for ventilation of the upper ocean and are also linked to the strength of the Atlantic Meridional Overturning Circulation (AMOC). Here, we show based on benthic foraminiferal Mg/Ca ratios, that during times of enhanced melting from the Laurentide Ice Sheet (LIS) between 9.0-8.5 thousand years before present (ka) the production of central waters weakened the upper AMOC resulting in a cooling over the Northern Hemisphere. Centered at 8.54 ± 0.2 ka and 8.24 ± 0.1 ka our dataset records two ~150-year cooling events in response to the drainage of Lake Agassiz/Ojibway, indicating early slow-down of the upper AMOC in response to the initial freshwater flux into the subpolar gyre (SPG) followed by a more severe weakening of both the upper and lower branches of the AMOC at 8.2 ka. These results highlight the sensitivity of regional North Atlantic climate change to the strength of central-water overturning and exemplify the impact of both gradual and abrupt freshwater fluxes on eastern SPG surface water convection. In light of the possible future increase in Greenland Ice Sheet melting due to global warming these findings may help us to better constrain and possibly predict future North Atlantic climate change.
Resumo:
Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean-atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
Resumo:
The Pliocene period is the most recent time when the Earth was globally significantly (~3°C) warmer than today. However, the existing pCO2 data for the Pliocene are sparse and there is little agreement between the various techniques used to reconstruct palaeo-pCO2. Moreover, the temporal resolution of the published records does not allow a robust assessment of the role of declining pCO2 in the intensification of the Northern Hemisphere Glaciation (INHG) and a direct comparison to other proxy records are lacking. For the first time, we use a combination of foraminiferal (delta11B) and organic biomarker (alkenone-derived carbon isotopes) proxies to determine the concentration of atmospheric CO2 over the past 5 Ma. Both proxy records show that during the warm Pliocene pCO2 was between 330 and 400 ppm, i.e. similar to today. The decrease to values similar to pre-industrial times (275-285 ppm) occurred between 3.2 Ma and 2.8 Ma - coincident with the INHG and affirming the link between global climate, the cryosphere and pCO2.
Resumo:
Using the sea ice proxy IP25 and phytoplankton-derived biomarkers (brassicasterol and dinosterol) Arctic sea-ice conditions were reconstructed for Marine Isotope Stage (MIS) 3 to 1 in sediment cores from the north of Barents Sea continental margin across the Central Arctic to the Southern Mendeleev Ridge. Our results suggest more extensive sea-ice cover than present-day during MIS 3, increasing sea-ice growth during MIS 2 and decreased sea-ice cover during the last deglacial. The summer ice edge sustained north of the Barents Sea even during extremely cold (i.e., Last Glacial Maximum (LGM)) as well as warm periods (i.e., Bølling-Allerød). During the LGM, the western Svalbard margin and the northern Barents Sea margin areas were characterized by high concentrations of both IP25 and phytoplankton biomarkers, interpreted as a productive ice-edge situation, caused by the inflow of warm Atlantic Water. In contrast, the LGM high Arctic proper (north of 84°N) was covered by thick permanent sea ice throughout the year with rare break up, indicated by zero or near-zero biomarker concentrations. The spring/summer sea-ice margin significantly extended southwards to the southern Lomonosov Ridge and Mendeleev Ridge during the LGM. Our proxy reconstructions are very consistent with published model results based on the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM).