970 resultados para Receptor-alpha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+](i)) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+](i), which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+](i) transients was 28 muM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. 3 In fura-2-loaded neurons, voltage clamped at -60mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 muM) simultaneously inhibited nAChR-induced increases in [Ca2+](i) and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by - 40% at - 120, -80 and -40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+](i) by similar to40%. 5 Thiopental (25 muM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+](i), indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. 6 Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 muM), pentobarbital (50 muM) and ketamine (10 muM). 7 In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+](i) transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first time binding data of the molecular events underlying type 1 fimbrial adherence, by crystallographic analyses of the FimH receptor binding domains from a uropathogenic and a K-12 strain, and affinity measurements with mannose, common mono- and disaccharides, and a series of alkyl and aryl mannosides. Our results illustrate that the lectin domain of the FimH adhesin is a stable and functional entity and that an exogenous butyl alpha- D-mannoside, bound in the crystal structures, exhibits a significantly better affinity for FimH (K-d = 0.15 muM) than mannose (K-d = 2.3 muM). Exploration of the binding affinities of alpha-D-mannosides with longer alkyl tails revealed affinities up to 5 nM. Aryl mannosides and fructose can also bind with high affinities to the FimH lectin domain, with a 100-fold improvement and 15-fold reduction in affinity, respectively, compared with mannose. Taken together, these relative FimH affinities correlate exceptionally well with the relative concentrations of the same glycans needed for the inhibition of adherence of type 1 piliated E. coli. We foresee that our findings will spark new ideas and initiatives for the development of UTI vaccines and anti-adhesive drugs to prevent anticipated and recurrent UTIs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth hormone (GH) regulates many of the factors responsible for controlling the development of bone marrow progenitor cells (BMPCs). The aim of this study was to elucidate the role of GH in osteogenic differentiation of BMPCs using GH receptor null mice (GHRKO). BMPCs from GHRKO and their wild-type (WT) littermates were quantified by flow cytometry and their osteogenic differentiation in vitro was determined by cell morphology, real-time RT-PCR, and biochemical analyses. We found that freshly harvested GHRKO marrow contains 3% CD34 (hernatopoietic lineage), 43.5% CD45 (monocyte/macrophage lineage), and 2.5% CD106 positive (CFU-F/BMPC) cells compared to 11.2%, 45%, and 3.4% positive cells for (WT) marrow cells, respectively. When cultured for 14 days under conditions suitable for CFU-F expansion, GHRKO marrow cells lost CD34 positivity, and were markedly reduced for CD45, but 3- to 4-fold higher for CD106. While WT marrow cells also lost CD34 expression, they maintained CD45 and increased CD106 levels by 16-fold. When BMPCs from GHRKO mice were cultured under osteogenic conditions, they failed to elongate, in contrast to WT cells. Furthermore, GHRKO cultures expressed less alkaline phosphatase, contained less mineralized calcium, and displayed lower osteocalcin expression than WT cells. However, GHRKO cells displayed similar or higher expression of cbfa-1, collagen 1, and osteopontin mRNA compared to WT. In conclusion, we show that GH has an effect on the proportions of hematopoietic and mesenchymal progenitor cells in the bone marrow, and that GH is essential for both the induction and later progression of osteogenesis. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha 1, alpha 2, alpha 1 beta and alpha 2 beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha 2 beta GlyR relative to the alpha 2 GlyR but not in the alpha 1 beta GlyR relative to the alpha 1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha 2 beta GlyR was transferred to the alpha 1 beta GlyR by the G2'A (alpha 1 to alpha 2 subunit) substitution. In addition, the alpha 1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha 1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that human papillomavirus virus-like particles (VLPs) are able to activate the Ras/MAP kinase pathway. Ras can also elicit an anti-apoptotic signal via PI3-kinase so we investigated this further. Here we show that binding of VLPs from HPV types 6b, 18, 3 1, 35 and BPV1 results in activation of PI3-kinase. Activation was achieved by either L1 or L1/L2 VLPs and was dependent on both VLP-cell interaction and correct conformation of the virus particle. VLP-induced PI3-kinase activity resulted in efficient downstream signaling to Akt and consequent phosphorylation of FKHR and GSK3 beta. We also present evidence that PV signaling is activated via the alpha 6 beta 4 integrin. These data suggest that papillomaviruses use a common receptor that is able to signal through to Ras. Combined activation of the Ras/MAP kinase and PI3-kinase pathways may be beneficial for the virus by increasing cell numbers and producing an environment more conducive to infection. (c) 2006 Elsevier Inc. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, alpha-catenin has been best understood as an important cytoplasmic component of the classical cadherin complex responsible for cell-cell adhesion. By virtue of its capacity to bind F-actin, alpha-catenin was commonly envisaged to support cadherin function by coupling the adhesion receptor to the actin cytoskeleton. But is alpha-catenin solely the cadherin's handmaiden? A range of recent developments suggest, instead, that its biological activity is much more complex than previously appreciated. Evidence from cellular systems and model organisms demonstrates a clear, often dramatic, role for alpha-catenin in tissue organization and morphogenesis. The morphogenetic impact of alpha-catenin reflects its capacity to mediate functional cooperation between cadherins and the actin cytoskeleton, but is not confined to this. alpha-Catenin has a role in regulating cell proliferation and cadherin-independent pools of alpha-catenin may contribute to its functional impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Halofenate has been shown previously to lower triglycerides in dyslipidemic subjects. In addition, significant decreases in fasting plasma glucose were observed but only in type 2 diabetic patients. We hypothesized that halofenate might be an insulin sensitizer, and we present data to suggest that halofenate is a selective peroxisome proliferator-activated receptor (PPAR)-gamma modulator (SPPAR gamma M). We demonstrate that the circulating form of halofenate, halofenic acid (HA), binds to and selectively modulates PPAR-gamma. Reporter assays show that HA is a partial PPAR-gamma agonist, which can antagonize the activity of the full agonist rosiglitazone. The data suggest that the partial agonism of RA may be explained in part by effective displacement of corepressors (N-CoR and SMRT) coupled with inefficient recruitment of coactivators (p300, CBP, and TRAP 220). In human preadipocytes, HA displays weak adipogenic activity and antagonizes rosiglitazone-mediated adipogenic differentiation. Moreover, in 3T3-L1 adipocytes, HA selectively modulates the expression of multiple PPAR-gamma-responsive genes. Studies in the diabetic ob/ob mouse demonstrate halofenate's acute antidiabetic properties. Longer-term studies in the obese Zucker (fa/fa) rat demonstrate halofenate's comparable insulin sensitization to rosiglitazone in the absence of body weight increases. Our data establish halofenate as a novel SPPAR-gamma M with promising therapeutic utility with the potential for less weight gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcitonin receptor like-receptor is a family B G-protein coupled receptor (GPCR). It requires receptor activity modifying protein (RAMP) 1 to give a calcitonin gene-related peptide (CGRP) receptor. Little is known of how members of this receptor family function. Proline residues often form important kinks in alpha-helices. Therefore, all proline residues within the transmembrane helices of the receptor (Pro241, Pro244 in helix 4, Pro275 in helix 5, Pro321 and Pro331 in helix 6) were mutated to alanine. Pro241 Pro275, and Pro321 are highly conserved throughout all family B GPCRs. The binding of CGRP and its ability to stimulate cAMP production were investigated in mutant and wild-type receptors after transient transfection into COS-7 cells with RAMP1. The P321A mutation significantly decreased the pEC(50) for CGRP and reduced its affinity but did not change cell-surface expression. Antagonist binding [CGRP(8-37) and 1-piperidinecarboxamide N-[2-[[5amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quina zolinyl) (BIBN4096BS)] was little altered by the mutation. Adrenomedullin-mediated signaling was disrupted when P321A was coexpressed with RAMP1, RAMP2, or RAMP3. The P331A mutant produced a moderate reduction in CGRP binding and receptor activation. Mutation of the other residues had no effect on receptor function. Thus, Pro321 and Pro331 are required for agonist binding and receptor activation. Modeling suggested that Pro321 induces a bend in helix 6, bringing its C terminus near that of helix 3, as seen in many family A GPCRs. This is abolished in P321A. P321A-I325P predicted to restore this conformation, showed wild-type activation. Modeling can also rationalize the effects of transmembrane proline mutants previously reported for another family B GPCR, the VPAC(1) receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The L6 myocyte cell line expresses high affinity receptors for calcitonin gene-related peptide (CGRP) which are coupled to activation of adenylyl cyclase. The biochemical pharmacology of these receptors has been examined by radioligand binding or adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation. 2 In intact cells at 37 degrees C, human and rat alpha- and beta-CGRP all activated adenylyl cyclase with EC50s of about 1.5 nM. A number of CGRP analogues containing up to five amino acid substitutions showed similar potencies. In membrane binding studies at 22 degrees C in 1 mM Mg2+, the above all bound to a single site with IC50s of 0.1-0.4 nM. 3 The fragment CGRP(8-37) acted as a competitive antagonist of CGRP stimulation of adenylyl cyclase with a calculated Kd of 5 nM. The Kd determined in membrane binding assays was lower (0.5 nM). 4 The N-terminal extended human alpha-CGRP analogue Tyro-CGRP activated adenylyl cyclase and inhibited [125I]-iodohistidyl-CGRP binding less potently than human alpha-CGRP (EC50 for cyclase = 12 nM, IC50 for binding = 4 nM). 5 The pharmacological profile of the L6 CGRP receptor suggests that it most closely resembles sites on skeletal muscle, cardiac myocytes and hepatocytes. The L6 cell line should be a stable homogeneous model system in which to study CGRP mechanisms and pharmacology."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma protein zinc-α2-glycoprotein (ZAG) has been shown to be identical with a lipid mobilizing factor capable of inducing loss of adipose tissue in cancer cachexia through an increased lipid mobilization and utilization. The ability of ZAG to induce uncoupling protein (UCP) expression has been determined using in vitro models of adipose tissue and skeletal muscle. ZAG induced a concentration-dependent increase in the expression of UCP-1 in primary cultures of brown, but not white, adipose tissue, and this effect was attenuated by the β3-adrenergic receptor (β3-AR) antagonist SR59230A. A 6.5-fold increase in UCP-1 expression was found in brown adipose tissue after incubation with 0.58 μM ZAG. ZAG also increased UCP-2 expression 3.5-fold in C2C12 murine myotubes, and this effect was also attenuated by SR59230A and potentiated by isobutylmethylxanthine, suggesting a cyclic AMP-mediated process through interaction with a β3-AR. ZAG also produced a dose-dependent increase in UCP-3 in murine myotubes with a 2.5-fold increase at 0.58 μM ZAG. This effect was not mediated through the β3-AR, but instead appeared to require mitogen activated protein kinase. These results confirm the ability of ZAG to directly influence UCP expression, which may play an important role in lipid utilization during cancer cachexia. © 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression.

METHODS: Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies.

RESULTS: Immunofluorescent staining revealed TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha-induced TRPA1 responses after Biodentine treatment.

CONCLUSIONS: In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogens can be labeled with the positron-emitting radionuclide fluorine-18 (t$\sb{1/2}$ = 110 min) by fluoride ion (n-Bu$\sb4$N$\sp{18}$F) displacement of a 16$\beta$-trifluoromethanesulfonate (triflate) derivative of the corresponding estrone 3-triflate, and purification by HPLC. That sequence has been used to synthesize the 11$\beta$-methoxy 1 and 11$\beta$-ethyl 2 analogues of the breast tumor imaging agent, 16$\alpha$-($\sp{18}$F) fluoro-17$\beta$-estradiol (FES). Tissue distribution studies of 1 and 2 in immature female rats show high selectivity for target tissue (T, uterus) vs non-target (NT, muscle and lung), with T/NT ratios being 43 and 17 at one hour after injection for 1 and 2, respectively. The parent estrogen FES has previously been shown to display an intermediate value for tissue selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.