959 resultados para Readability Formulas
Resumo:
The generating functional method is employed to investigate the synchronous dynamics of Boolean networks, providing an exact result for the system dynamics via a set of macroscopic order parameters. The topology of the networks studied and its constituent Boolean functions represent the system's quenched disorder and are sampled from a given distribution. The framework accommodates a variety of topologies and Boolean function distributions and can be used to study both the noisy and noiseless regimes; it enables one to calculate correlation functions at different times that are inaccessible via commonly used approximations. It is also used to determine conditions for the annealed approximation to be valid, explore phases of the system under different levels of noise and obtain results for models with strong memory effects, where existing approximations break down. Links between Boolean networks and general Boolean formulas are identified and results common to both system types are highlighted. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
The damping behaviour of the cold chamber pressure-die-casting alloy: M3, ZA8, ZA27, ZM11, Cosmal, Supercosmal and newly developed ZA27H1 and ZA27H2 was investigated at room temperature and elevated temperatures of up to 90 degrees C. The damping properties of the alloys were established at all temperatures. Formulas were established to predict damping properties of each alloy at any given temperature. The prediction formulae were found to be very accurate. All of the experimental alloys were heterogenous with varying microstructure and grain size; this was the major contribution and dominated the damping properties of the alloys. Super cosmal and ZA27 possessed the highest tensile strength but ZA27H1, ZA27H2 and ZM11 showed the highest damping properties. The relationship between microstructure and damping capacity of all alloys was also examined using back-scattered electron on the SEM. Further more detailed examinations of the microstructures of alloys ZM11, Cosmal and Supercosmal were carried out on the transmission electron microscope in order to establish the phases present in all alloys. These helped to obtain the mechanism of damping in the experimental alloys. The main damping mechanism in most of the experimental alloys was due to grain-boundary-sliding. Micro structural examinations also revealed the absence of -phase in the Cosmal and Supercosmal. This was thought to be due to a change in solid solubility of the alloys, which could have been caused by the addition of Si.
Resumo:
The dynamics of Boolean networks (BN) with quenched disorder and thermal noise is studied via the generating functional method. A general formulation, suitable for BN with any distribution of Boolean functions, is developed. It provides exact solutions and insight into the evolution of order parameters and properties of the stationary states, which are inaccessible via existing methodology. We identify cases where the commonly used annealed approximation is valid and others where it breaks down. Broader links between BN and general Boolean formulas are highlighted.
Resumo:
This paper introduces a mechanism for generating a series of rules that characterize the money price relationship for the USA, defined as the relationship between the rate of growth of the money supply and inflation. Monetary component data is used to train a selection of candidate feedforward neural networks. The selected network is mined for rules, expressed in human-readable and machine-executable form. The rule and network accuracy are compared, and expert commentary is made on the readability and reliability of the extracted rule set. The ultimate goal of this research is to produce rules that meaningfully and accurately describe inflation in terms of the monetary component dataset.
Resumo:
The focus of this paper is on the doctoral research training experienced by one of the authors and the ways in which the diverse linguistic and disciplinary perspectives of her two supervisors (co-authors of this paper) mediated the completion of her study. The doctoral candidate is a professional translator/interpreter and translation teacher. The paper describes why and how she identified her research area and then focused on the major research questions in collaboration with her two supervisors, who brought their differing perspectives from the field of linguistics to this translation research, even though they are not translators by profession or disciplinary background and do not speak Korean. In addition, the discussion considers the focus, purpose and theoretical orientation of the research itself (which addressed questions of readability in translated English-Korean texts through detailed analysis of a corpus and implications for professional translator training) as well as the supervisory and conceptual processes and practices involved. The authors contend that doctoral research of this kind can be seen as a mutual learning process and that inter-disciplinary research can make a contribution not only to the development of rigorous research in the field of translation studies but also to the other disciplinary fields involved.
Resumo:
Two experiments were undertaken with 3 goals: (a) to determine whether manipulating the desirability of including empathy as part of one's gender-role identity motivates accurate mind-reading, (b) to ascertain whether target readability moderates the strength of this effect, and (c) to test whether these effects are mediated by the complexity of perceivers' inferential strategies. Participants viewed videotapes of 2 couples discussing relationship problems and attempted to infer each partner's thoughts and feelings. Both experiments demonstrated that motivation improved accuracy when male and female perceivers valued the empathy-relevant aspects of the traditional female gender role. However, as predicted, high levels of motivation facilitated the accurate reading of easy targets but not of difficult targets. Several mediational models were tested, the results of which showed that the complexity of perceivers' attributions mediated the link between motivation and mind-reading accuracy.
Resumo:
Abstract: Loss of central vision caused by age-related macular degeneration (AMD) is a problem affecting increasingly large numbers of people within the ageing population. AMD is the leading cause of blindness in the developed world, with estimates of over 600,000 people affected in the UK . Central vision loss can be devastating for the sufferer, with vision loss impacting on the ability to carry out daily activities. In particular, inability to read is linked to higher rates of depression in AMD sufferers compared to age-matched controls. Methods to improve reading ability in the presence of central vision loss will help maintain independence and quality of life for those affected. Various attempts to improve reading with central vision loss have been made. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous experimental work and theoretical arguments on spatial integrative properties of the peripheral retina suggest that ‘visual crowding’ may be a major factor contributing to inefficient reading. Crowding refers to the phenomena in which juxtaposed targets viewed eccentrically may be difficult to identify. Manipulating text spacing of reading material may be a simple method that reduces crowding and benefits reading ability in macular disease patients. In this thesis the effect of textual manipulation on reading speed was investigated, firstly for normally sighted observers using eccentric viewing, and secondly for observers with central vision loss. Test stimuli mimicked normal reading conditions by using whole sentences that required normal saccadic eye movements and observer comprehension. Preliminary measures on normally-sighted observers (n = 2) used forced-choice procedures in conjunction with the method of constant stimuli. Psychometric functions relating the proportion of correct responses to exposure time were determined for text size, font type (Lucida Sans and Times New Roman) and text spacing, with threshold exposure time (75% correct responses) used as a measure of reading performance. The results of these initial measures were used to derive an appropriate search space, in terms of text spacing, for assessing reading performance in AMD patients. The main clinical measures were completed on a group of macular disease sufferers (n=24). Firstly, high and low contrast reading acuity and critical print size were measured using modified MNREAD test charts, and secondly, the effect of word and line spacing was investigated using a new test, designed specifically for this study, called the Equal Readability Passages (ERP) test. The results from normally-sighted observers were in close agreement with those from the group of macular disease sufferers. Results show that: (i) optimum reading performance was achieved when using both double line and double word spacing; (ii) the effect of line spacing was greater than the effect of word spacing (iii) a text size of approximately 0.85o is sufficiently large for reading at 5o eccentricity. In conclusion, the results suggest that crowding is detrimental to reading with peripheral vision, and its effects can be minimized with a modest increase in text spacing.
Resumo:
Recently, we have developed the hierarchical Generative Topographic Mapping (HGTM), an interactive method for visualization of large high-dimensional real-valued data sets. In this paper, we propose a more general visualization system by extending HGTM in three ways, which allows the user to visualize a wider range of data sets and better support the model development process. 1) We integrate HGTM with noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM). This enables us to visualize data of inherently discrete nature, e.g., collections of documents, in a hierarchical manner. 2) We give the user a choice of initializing the child plots of the current plot in either interactive, or automatic mode. In the interactive mode, the user selects "regions of interest," whereas in the automatic mode, an unsupervised minimum message length (MML)-inspired construction of a mixture of LTMs is employed. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. 3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualization plots, since they can highlight the boundaries between data clusters. We illustrate our approach on a toy example and evaluate it on three more complex real data sets. © 2005 IEEE.
Resumo:
Robust, bifunctional catalysts comprising Rh(CO)(Xantphos) exchanged phosphotungstic acids of general formulas [Rh(CO)(Xantphos)]+n[H3–nPW12O40]n− have been synthesized over silica supports which exhibit tunable activity and selectivity toward direct vapor phase methanol carbonylation. The optimal Rh:acid ratio = 0.5, with higher rhodium concentrations increasing the selectivity to methyl acetate over dimethyl ether at the expense of lower acidity and poor activity. On-stream deactivation above 200 °C reflects Rh decomplexation and reduction to Rh metal, in conjunction with catalyst dehydration and loss of solid acidity because of undesired methyl acetate hydrolysis, but can be alleviated by water addition and lower temperature operation.
Resumo:
This thesis presents a two-dimensional water model investigation and development of a multiscale method for the modelling of large systems, such as virus in water or peptide immersed in the solvent. We have implemented a two-dimensional ‘Mercedes Benz’ (MB) or BN2D water model using Molecular Dynamics. We have studied its dynamical and structural properties dependence on the model’s parameters. For the first time we derived formulas to calculate thermodynamic properties of the MB model in the microcanonical (NVE) ensemble. We also derived equations of motion in the isothermal–isobaric (NPT) ensemble. We have analysed the rotational degree of freedom of the model in both ensembles. We have developed and implemented a self-consistent multiscale method, which is able to communicate micro- and macro- scales. This multiscale method assumes, that matter consists of the two phases. One phase is related to micro- and the other to macroscale. We simulate the macro scale using Landau Lifshitz-Fluctuating Hydrodynamics, while we describe the microscale using Molecular Dynamics. We have demonstrated that the communication between the disparate scales is possible without introduction of fictitious interface or approximations which reduce the accuracy of the information exchange between the scales. We have investigated control parameters, which were introduced to control the contribution of each phases to the matter behaviour. We have shown, that microscales inherit dynamical properties of the macroscales and vice versa, depending on the concentration of each phase. We have shown, that Radial Distribution Function is not altered and velocity autocorrelation functions are gradually transformed, from Molecular Dynamics to Fluctuating Hydrodynamics description, when phase balance is changed. In this work we test our multiscale method for the liquid argon, BN2D and SPC/E water models. For the SPC/E water model we investigate microscale fluctuations which are computed using advanced mapping technique of the small scales to the large scales, which was developed by Voulgarakisand et. al.
Resumo:
Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.
Resumo:
In this paper, we introduce a further generalization of the gamma function involving Gauss hypergeometric function 2F1 (a, b; c; z)
Resumo:
The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented in the paper are simple formulas for subdifferentials of marginal, or performance functions.
Resumo:
For first-order classical logic a new notion of admissible substitution is defined. This notion allows optimizing the procedure of the application of quantifier rules when logical inference search is made in sequent calculi. Our objective is to show that such a computer-oriented sequent technique may be created that does not require a preliminary skolemization of initial formulas and that is efficiently comparable with methods exploiting the skolemization. Some results on its soundness and completeness are given.
Resumo:
2000 Mathematics Subject Classification: 35J05, 35C15, 44P05