995 resultados para Ragnar Loðbrók, Danish chief, 9th century.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results: Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2006 we celebrated the centenary of a remarkable year that saw the birth of genetics as a scientific discipline. This birth had its origins in horticulture and was supervised by a remarkable Cambridge academic, accompanied by a loyal group of female colleagues who worked together in underfunded conditions with little institutional support. Despite this deprivation, they established the foundations of an ongoing revolution, with huge academic and commercial consequences that we can recognize today in the shape of genomics and its application to biomedicine.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intelligent buildings should be sustainable, healthy, technologically aware, meet the needs of occupants and business, and should be flexible and adaptable to deal with change. This means the processes of design, construction, commissioning and facilities management including post occupancy evaluation are all equally important. Buildings comprise many systems devised by many people and yet the relationship between buildings and people can only work satisfactorily if there is integrated team with a holistic vision. The address will discuss some trends in the design and management of intelligent buildings for this century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Danish Eulerian Model (DEM) is a powerful air pollution model, designed to calculate the concentrations of various dangerous species over a large geographical region (e.g. Europe). It takes into account the main physical and chemical processes between these species, the actual meteorological conditions, emissions, etc.. This is a huge computational task and requires significant resources of storage and CPU time. Parallel computing is essential for the efficient practical use of the model. Some efficient parallel versions of the model were created over the past several years. A suitable parallel version of DEM by using the Message Passing Interface library (AIPI) was implemented on two powerful supercomputers of the EPCC - Edinburgh, available via the HPC-Europa programme for transnational access to research infrastructures in EC: a Sun Fire E15K and an IBM HPCx cluster. Although the implementation is in principal, the same for both supercomputers, few modifications had to be done for successful porting of the code on the IBM HPCx cluster. Performance analysis and parallel optimization was done next. Results from bench marking experiments will be presented in this paper. Another set of experiments was carried out in order to investigate the sensitivity of the model to variation of some chemical rate constants in the chemical submodel. Certain modifications of the code were necessary to be done in accordance with this task. The obtained results will be used for further sensitivity analysis Studies by using Monte Carlo simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in climate variability as well as changes in extreme weather and climate events in the 20th century, especially those that took place during the last two to three decades of the 20th century, have been discussed in many recent scientific publications. Attempts to project the results of such studies in the future have been made under different assumptions. In this paper, we have chosen one of the well-known scenarios predicting changes of the climate in the world during the last 30 years of the 21st century. This scenario is used, together with several general predictions related to the future climate, to produce three climatic scenarios. The derived climatic scenarios are used to calculate predictions for future pollution levels in Denmark and in Europe by applying the Unified Danish Eulerian Model (UNI-DEM), on a space domain containing the whole of Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large scale air pollution models are powerful tools, designed to meet the increasing demand in different environmental studies. The atmosphere is the most dynamic component of the environment, where the pollutants can be moved quickly on far distnce. Therefore the air pollution modeling must be done in a large computational domain. Moreover, all relevant physical, chemical and photochemical processes must be taken into account. In such complex models operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The Danish Eulerian Model (DEM) is one of the most advanced such models. Its space domain (4800 × 4800 km) covers Europe, most of the Mediterian and neighboring parts of Asia and the Atlantic Ocean. Efficient parallelization is crucial for the performance and practical capabilities of this huge computational model. Different splitting schemes, based on the main processes mentioned above, have been implemented and tested with respect to accuracy and performance in the new version of DEM. Some numerical results of these experiments are presented in this paper.