1000 resultados para Radiative processes
Resumo:
We report fundamental changes of the radiative recombination in a wide range of n-type and p-type GaAs after diffusion with the group-I element Li. These optical properties are found to be a bulk property and closely related to the electrical conductivity of the samples. In the Li-doped samples the radiative recombination is characterized by emissions with excitation-dependent peak positions which shift to lower energies with increasing degree of compensation and concentration of Li. These properties are shown to be in qualitative agreement with fluctuations of the electrostatic potential in strongly compensated systems. For Li-diffusion temperatures above 700-800-degrees-C semi-insulating conditions with electrical resistivity exceeding 10(7) OMEGA cm are obtained for all conducting starting materials. In this heavy Li-doping regime, the simple model of fluctuating potentials is shown to be inadequate for explaining the. experimental observations unless the number of charged impurities is reduced through complexing with Li. For samples doped with low concentrations of Li, on the other hand, the photoluminescence properties are found to be characteristic of impurity-related emissions.
Resumo:
The rising time of the excitonic luminescence in GaAs/AlGaAs quantum wells is studied as a function of the well width. For well thickness below approximately 20 Angstrom, we find an increase of rising time with decreasing well width. We explain the dependence of the rising time on well width in very thin quantum wells by the slow-down energy relaxation and/or exciton migration processes due to the decrease of the scattering rate of the exciton-acoustic-phonon interaction. (C) 1996 American Institute of Physics.
Resumo:
Experimental study of the reverse annealing of the effective concentration of ionized space charges (N-eff, also called effective doping or impurity concentration) of neutron irradiated high resistivity silicon detectors fabricated on wafers with various thermal oxides has been conducted at room temperature (RT) and elevated temperature (ET). Various thermal oxidations with temperatures ranging from 975 degrees C to 1200 degrees C with and without trichlorethane (TCA), which result in different concentrations of oxygen and carbon impurities, have been used. It has been found that, the RT annealing of the N-eff is hindered initially (t < 42 days after the radiation) for detectors made on the oxides with high carbon concentrations, and there was no carbon effect on the long term (t > 42 days after the radiation) N-eff reverse annealing. No apparent effect of oxygen on the stability of N-eff has been observed at RT. At elevated temperature (80 degrees C), no significant difference in annealing behavior has been found for detectors fabricated on silicon wafers with various thermal oxides. It is apparent that for the initial stages (first and/or second) of N-eff reverse annealing, there may tie no dependence on the oxygen and carbon concentrations in the ranges studied.
Resumo:
Transient photocurrents induced by short light pulses at lattice-matched GaAs/AlxGa1-xAs multiple quantum well (MQW) electrodes were studied as a function of electrode potential. Dual exponential photocurrent decay transients were observed at various potentials. By analysis of the dual exponential decay transients, information on steady state photocurrents (I-s), surface collection of photoexcited minority carriers (G(0)) and lifetimes of surface states (T-s) was obtained. The kinetic behaviors of photoprocesses at illuminated MQW/electrolyte interface were discussed.