939 resultados para Radial growth
Resumo:
Zinc micro and nanostructures were synthesized in vacuum by condensing evaporated zinc on Si substrate at different gas pressures. The morphology of the grown Zn structures was found to be dependent on the oxygen partial pressure. Depending on oxygen partial pressure it varied from two-dimensional microdisks to one-dimensional nanowire. The morphology and structural properties of the grown micro and nanostructures were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Transmission electron microscopy (TEM) studies on the grown Zn nanowires have shown that they exhibit core/shell-like structures, where a thin ZnO layer forms the shell. A possible growth mechanism behind the formation of different micro and nanostructures has been proposed. In addition, we have synthesized ZnO nanocanal-like structures by annealing Zn nanowires in vacuum at 350 °C for 30 min.
Resumo:
The cytokinins (benzyladenine or benzyladenosine) decreased spermidine and spermine contents despite increasing putrescine content, when administered to isolated cotyledons of Cucumis sativus L. var. Guntur in organ culture. KCl decreased putrescine contents, although marginally increasing polyamine contents. The cytokinins and/or KCl augmented nucleic acid biosynthesis and accumulation, resulting in enhanced growth and differentiation of the isolated cotyledons. These observations show that polyamine accumulation and growth are not always coupled.
Resumo:
Neurotrophic factors (NTFs) and the extracellular matrix (ECM) are important regulators of axonal growth and neuronal survival in mammalian nervous system. Understanding of the mechanisms of this regulation is crucial for the development of posttraumatic therapies and drug intervention in the injured nervous system. NTFs act as soluble, target-derived extracellular regulatory molecules for a wide range of physiological functions including axonal guidance and the regulation of programmed cell death in the nervous system. The ECM determines cell adhesion and regulates multiple physiological functions via short range cell-matrix interactions. The present work focuses on the mechanisms of the action of NTFs and the ECM on axonal growth and survival of cultured sensory neurons from dorsal root ganglia (DRG). We first examined signaling mechanisms of the action of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) on axonal growth. GDNF, neurturin (NRTN) and artemin (ART) but not persephin (PSPN) promoted axonal initiation in cultured DRG neurons from young adult mice. This effect required Src family kinase (SFK) activity. In neurons from GFRalpha2-deficient mice, NRTN did not significantly promote axonal initiation. GDNF and NRTN induced extensive lamellipodia formation on neuronal somata and growth cones. This study suggested that GDNF, NRTN and ARTN may serve as stimulators of nerve regeneration under posttraumatic conditions. Consequently we studied the convergence of signaling pathways induced by NTFs and the ECM molecule laminin in the intracellular signaling network that regulates axonal growth. We demonstrated that co-stimulation of DRG neurons with NTFs (GDNF, NRTN or nerve growth factor (NGF)) and laminin leads to axonal growth that requires activation of SFKs. A different, SFK-independent signaling pathway evoked axonal growth on laminin in the absence of the NTFs. In contrast, axonal branching was regulated by SFKs both in the presence and in the absence of NGF. We proposed and experimentally verified a Boolean model of the signaling network triggered by NTFs and laminin. Our results put forward an approach for predictable, Boolean logics-driven pharmacological manipulation of a complex signaling network. Finally we found that N-syndecan, the receptor for the ECM component HB-GAM was required for the survival of neonatal sensory neurons in vitro. We demonstrated massive cell death of cultured DRG neurons from mice deficient in the N-syndecan gene as compared to wild type controls. Importantly, this cell death could not be prevented by NGF the neurotrophin which activates multiple anti-apoptotic cascades in DRG neurons. The survival deficit was observed during first postnatal week. By contrast, DRG neurons from young adult N-syndecan knock-out mice exhibited normal survival. This study identifies a completely new syndecan-dependent type of signaling that regulates cell death in neurons.
Resumo:
Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.
Resumo:
In this paper, we report the synthesis of barium zirconate, BaZrO3, (BZ) nanotubes fabricated by the modified sol-gel method within the nanochannels of anodic aluminum oxide (AAO) templates. The morphology, structure, and composition of as prepared nanotubes were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected-area electron diffraction ( SAED), high resolution TEM (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The results of XRD and SAED indicated that postannealed (at 650 degrees C for 1 h) BZ nanotubes (BZNTs) exhibited a polycrystalline cubic perovskite crystal structure. SEM and TEM analysis revealed that BZNTs possessed a uniform length and diameter (similar to 200 nm) and the thickness of the wall of the BZNTs was about 20 nm. Y-junctions, multiple branching and typical T-junctions were also observed in some BZNTs. EDX analysis demonstrated that stoichiometric BaZrO3 was formed. HRTEM image confirmed that the obtained BZNTs were composed of nanoparticles in the range of 5-10 nm. The possible formation mechanism of BZNTs was discussed.
Resumo:
RAPADILINO syndrome is an autosomally resessively inherited condition that belongs to a group of rare syndromes more common in Finland than in other parts of the world. RAPADILINO is characterized by pre- and postnatal growth retardation, radial ray defects, diarrhoea of unknown aetiology during chilhood, a facial resemblance with other patients and normal intelligence. In Finland, 15 patients with this condition have been found which compares with only five patients in other parts of the world. We found RECQL4 gene mutations in RAPADILINO patients and proved this syndrome to be allelic with a subgroup of Rothmund-Thomson syndrome (RTS). Later we found RECQL4 mutations in patients with Baller-Gerold syndrome (BGS). These three syndromes share clinical findings and differential diagnostics rely on poikiloderma and craniosynostosis not seen in RAPADILINO syndrome. We found five different mutations in the Finnish RAPADILINO patients. The g.2545delT mutation is the founder mutation in the Finnish population as all the patients are either homozygotes or compound heterozygotes for it. This mutation leads to the inframe skipping of exon seven from mRNA. The protein encoded by this mutant mRNA lacks the nuclear retention signal and thus leads to the mislocalization of the mutant protein. The genotype-phenotype correlation is not straightforward but it seems that RAPADILINO could be due to alteration in protein function and truncating mutations in both alleles are more common among RTS patients. RTS patients with RECQL4 mutations have an elevated risk for osteosarcoma, but their risk to develop other types of malignancies is not increased.Two Finnish RAPADILINO patients have been diagnosed with osteosarcoma, but in addition to this we have found an excess of lymphoma cases among the Finnish RAPADILINO patients. This difference between cancer types could be due to different mutations found in these syndromes. The mutation screening of the patients will help to differentiate patients who have RECQL4 mutations and thus the elevated cancer risk. Patients will benefit from the follow up since early detection of malignancies is important for the treatment.
Resumo:
Zinc film containing hexagonal plate stack and tower-like micro structures were grown on Si substrates at high temperature by thermal evaporation. Thermal oxidation studies on these micro structures have shown that ZnO nanoneedles selectively grow from the facets of the zinc microstructure at temperature above 300 degrees C in atmosphere TEM analysis showed that single crystalline and bicrystalline nanoneedles were formed in this oxidation process and the growth direction of these nanoneedles was identified along the [1 1 (2) overbar 0]. Based on the structural studies and morphological observation, we have proposed a possible mechanism for the selective growth of ZnO nanoneedles during thermal oxidation.
Resumo:
A Caucasian male aged 15 years presented with 2 years accelerated linear growth. He was 202 cm tall at presentation, with calculated mid-parental height of 173 cm. There were no features of hypopituitarism or acral growth. His visual fields and optic discs were normal...
Resumo:
Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat−/− mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat−/− mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat−/− mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat−/− mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat−/− mice.
Resumo:
The main aim of my thesis project was to assess the impact of elevated ozone (O3) and carbon dioxide (CO2) on the growth, competition and community of meadow plants in northern Europe. The thesis project consisted of three separate O3 and CO2 exposure experiments that were conducted as open-top-chamber (OTC) studies at Jokioinen, SW Finland, and a smaller-scale experiment with different availabilities of resources in greenhouses in Helsinki. The OTC experiments included a competition experiment with two- and three-wise interactions, a mesocosm-scale meadow community with a large number of species, and a pot experiment that assessed intraspecific differences of Centaurea jacea ecotypes. The studied lowland hay meadow proved to be an O3-sensitive biotope, as the O3 concentrations used (40-50 ppb) were moderate, and yet, six out of nine species (Campanula rotundifolia, Centaurea jacea, Fragaria vesca, Ranunculus acris, Trifolium medium, Vicia cracca) showed either significant reductions in biomass or reproductive development, visible O3 injury or any two as a response to elevated O3. The plant species and ecotypes exhibited large intra- and interspecific variation in their response to O3, but O3 and CO2 concentrations did not cause changes in their interspecific competition or in community composition. However, the largest O3-induced growth reductions were seen in the least abundant species (C. rotundifolia and F. vesca), which may indicate O3-induced suppression of weak competitors. The overall effects of CO2 were relatively small and mainly restricted to individual species and several measured variables. Based on the present studies, most of the deleterious effects of tropospheric O3 are not diminished by a moderate increase in CO2 under low N availability, and variation exists between different species and variables. The present study indicates that the growth of several herb species decreases with increasing atmospheric O3 concentrations, and that these changes may pose a threat to the biodiversity of meadows. Ozone-induced reductions in the total community biomass production and N pool are likely to have important consequences for the nutrient cycling of the ecosystem.
Resumo:
The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.
Resumo:
We consider the growth of an isolated precipitate when the matrix diffusivity depends on the composition. We have simulated precipitate growth using the Cahn-Hilliard model, and find good agreement between our results and those from a sharp interface theory for systems with and without a dilatational misfit. With misfit, we report (and rationalize) an interesting difference between systems with a constant diffusivity and those with a variable diffusivity in the matrix.
Resumo:
In this communication, we report the spontaneous and reversible in vitro self-assembly of a polypeptide fragment derived from the C-terminal domain of Insulin-like Growth Factor Binding Protein (IGFBP-2) into soluble nanotubular structures several micrometres long via a mechanism involving inter-molecular disulfide bonds and exhibiting enhanced fluorescence.