955 resultados para RNA-Binding Protein FUS
Resumo:
CCAAT/enhancer binding protein-α (CEBPA) mutations in acute myeloid leukemia (AML) patients with a normal karyotype (NK) confer favorable prognosis, whereas NK-AML patients per se are of intermediate risk. This suggests that blocked CEBPA function characterizes NK-AML with favorable outcome. We determined the prognostic significance of CEBPA DNA binding function by enzyme-linked immunosorbent assay in 105 NK-AML patients. Suppressed CEBPA DNA binding was defined by 21 good-risk AML patients with inv(16) or t(8;21) (both abnormalities targeting CEBPA) and 8 NK-AML patients with dominant-negative CEBPA mutations. NK-AML patients with suppressed CEBPA function showed a better overall survival (P = .0231) and disease-free survival (P = .0069) than patients with conserved CEBPA function. Suppressed CEBPA DNA binding was an independent marker for better overall survival and disease-free survival in a multivariable analysis that included FLT3-ITD, NPM1 and CEBPA mutation status, white blood cell count, age and lactate dehydrogenase. These data indicate that suppressed CEBPA function is associated with favorable prognosis in NK-AML patients.
Resumo:
RNA editing in kinetoplastid protozoa is a post-transcriptional process of uridine insertion or deletion in mitochondrial mRNAs. The process involves two RNA species, the pre-edited mRNA and in most cases a trans-acting guide RNA (gRNA). Sequences within gRNAs define the position and extend of mRNA editing. Both mRNAs and gRNAs are encoded by mitochondrial genes in the kinetoplast DNA (kDNA), which consists of thousands of small circular DNA molecules, called minicircles, encoding thousands of gRNAs, catenated together and with a few mRNA encoding larger circles, the maxicircles, to form a huge DNA network. Editing has been shown to result in translatable mRNAs of bona fide mitochondrial genes as well as novel alternatively edited transcripts that are involved in the maintenance of the kDNA itself. RNA editing occurs within large protein-RNA complexes, editosomes, containing gRNA, preedited and partially edited mRNAs and also structural and catalytically active proteins. Editosomes are diverse in both RNA and protein composition and undergoe structural remodeling during the maturation. The compositional and structural diversity of editosomes further underscores the complexity of the RNA editing process.
Resumo:
There is accumulating evidence for the involvement of the unfolded protein response (UPR) in the pathogenesis of many tumor types in humans. This is particularly the case in rapidly growing solid tumors in which the demand for oxygen and nutrients can exceed the supply until new tumor-initiated blood vessels are formed. In contrast, the role of the UPR during leukemogenesis remains largely unknown. Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of somatic mutations in hematopoietic progenitor cells that alter the physiological regulation of self-renewal, survival, proliferation, or differentiation. The CCAAT/enhancer-binding protein alpha (CEBPA) gene is a key myeloid transcription factor and a frequent target for disruption in AML. In particular, translation of CEBPA mRNA can be specifically blocked by binding of the chaperone calreticulin (CALR), a well-established effector of the UPR, to a stem loop structure within the 5' region of the CEBPA mRNA. The relevance of this mechanism was first elucidated in certain AML subtypes carrying the gene rearrangements t(3;21) or inv(16). In our recent work, we could demonstrate the induction of key effectors of the UPR in leukemic cells of AML patients comprising all subtypes (according to the French-American-British (FAB) classification for human AML). The formation of the spliced variant of the X-box binding protein (XBP1s) was detectable in 17.4% (17 of 105) of AML patients. Consistent with an activated UPR, this group had significantly increased expression of the UPR target genes CALR, the 78 kDa glucose-regulated protein (GRP78), and the CCAAT/enhancer-binding protein homologous protein (CHOP). Consistently, in vitro studies confirmed that calreticulin expression was upregulated via activation of the ATF6 pathway in myeloid leukemic cells. As a consequence, CEBPA protein expression was inhibited in vitro as well as in leukemic cells from patients with activated UPR. We therefore propose a model of the UPR being involved in leukemogenesis through induction of calreticulin along the ATF6 pathway, thereby ultimately suppressing CEBPA translation and contributing to the block in myeloid differentiation and cell-cycle deregulation which represent key features of the leukemic phenotype. From a more clinical point of view, the presence of activated UPR in AML patient samples was found to be associated with a favorable disease course.
Resumo:
Ligands of the benzodiazepine binding site of the GABA(A) receptor come in three flavors: positive allosteric modulators, negative allosteric modulators and antagonists all of which can bind with high affinity. The GABA(A) receptor is a pentameric protein which forms a chloride selective ion channel and ligands of the benzodiazepine binding site stabilize three different conformations of this protein. Classical benzodiazepines exert a positive allosteric effect by increasing the apparent affinity of channel opening by the agonist γ-aminobutyric acid (GABA). We concentrate here on the major adult isoform, the α(1)β(2)γ(2) GABA(A) receptor. The classical binding pocket for benzodiazepines is located in a subunit cleft between α(1) and γ(2) subunits in a position homologous to the agonist binding site for GABA that is located between β(2) and α(1) subunits. We review here approaches to this picture. In particular, point mutations were performed in combination with subsequent analysis of the expressed mutant proteins using either electrophysiological techniques or radioactive ligand binding assays. The predictive power of these methods is assessed by comparing the results with the predictions that can be made on the basis of the recently published crystal structure of the acetylcholine binding protein that shows homology to the N-terminal, extracellular domain of the GABA(A) receptor. In addition, we review an approach to the question of how the benzodiazepine ligands are positioned in their binding pocket. We also discuss a newly postulated modulatory site for benzodiazepines at the α(1)/β(2) subunit interface, homologous to the classical benzodiazepine binding pocket.
Resumo:
RNA localization is tightly coordinated with RNA stability and translation control. Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors are part of a Drosophila transport machinery that localizes mRNAs to specific cellular regions during oogenesis and embryogenesis. We identified the Poly(A)-binding protein (Pabp) as a protein that forms an RNA-dependent complex with Bic-D in embryos and ovaries. pabp also interacts genetically with Bic-D and, similar to Bic-D, pabp is essential in the germline for oocyte growth and accumulation of osk mRNA in the oocyte. In the absence of pabp, reduced stability of osk mRNA and possibly also defects in osk mRNA transport prevent normal oocyte localization of osk mRNA. pabp also interacts genetically with osk and lack of one copy of pabp(+) causes osk to become haploinsufficient. Moreover, pointing to a poly(A)-independent role, Pabp binds to A-rich sequences (ARS) in the osk 3'UTR and these turned out to be required in vivo for osk function during early oogenesis. This effect of pabp on osk mRNA is specific for this RNA and other tested mRNAs localizing to the oocyte are less and more indirectly affected by the lack of pabp
Resumo:
Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.
Resumo:
OBJECTIVE: To measure maximum binding capacity (B(max)) and levels of mRNA expression for alpha(2)-adrenergic receptor (AR) subtypes in ileal and colonic muscle layers of healthy dairy cows. SAMPLE POPULATION: Ileal and colonic muscle specimens from 6 freshly slaughtered cows. PROCEDURES: Ileal and colonic muscle layers were obtained by scraping the mucosa and submucosa from full-thickness tissue specimens. Level of mRNA expression for alpha(2)-AR subtypes was measured by real-time reverse transcriptase-PCR analysis and expressed relative to the mean mRNA expression of glyceraldehyde phosphate dehydrogenase, ubiquitin, and 18S ribosomal RNA. Binding studies were performed with tritiated RX821002 ((3)H-RX821002) and subtype-selective ligands as competitors. RESULTS: mRNA expression for alpha(2AD)-, alpha(2B)-, and alpha(2C)-AR subtypes was similar in ileal and colonic muscle layers. The mRNA expression for alpha(2AD)-AR was significantly greater than that for alpha(2B)- and alpha(2C)-AR subtypes, representing 92%, 6%, and 2%, respectively, of the total mRNA. Binding competition of (3)H-RX821002 with BRL44408, imiloxan, and MK-912 was best fitted by a 1-site model. The B(max) of alpha(2AD)- and alpha(2C)-AR sub-types was greater than that of alpha(2B)-AR. The B(max) and level of mRNA expression were only correlated (r = 0.8) for alpha(2AD)-AR. Ratio of B(max) to mRNA expression for alpha(2C)-AR was similar to that for alpha(2B)-AR, but significantly greater than for alpha(2AD)-AR. CONCLUSIONS AND CLINICAL RELEVANCE: Subtypes of alpha(2)-AR in bovine intestinal muscle layers are represented by a mixture of alpha(2AD)- and alpha(2C)-ARs and of alpha(2B)-AR at a lower density. Information provided here may help in clarification of the role of AR subtypes in alpha(2)-adrenergic mechanisms regulating bovine intestinal motility.
Resumo:
Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.
Resumo:
The current paradigm on leukemogenesis indicates that leukemias are propagated by leukemic stem cells. The genomic events and pathways involved in the transformation of hematopoietic precursors into leukemic stem cells are increasingly understood. This concept is based on genomic mutations or functional dysregulation of transcription factors in malignant cells of patients with acute myeloid leukemia (AML). Loss of the CCAAT/enhancer binding protein-alpha (CEBPA) function in myeloid cells in vitro and in vivo leads to a differentiation block, similar to that observed in blasts from AML patients. CEBPA alterations in specific subgroups of AML comprise genomic mutations leading to dominant-negative mutant proteins, transcriptional suppression by leukemic fusion proteins, translational inhibition by activated RNA-binding proteins, and functional inhibition by phosphorylation or increased proteasomal-dependent degradation. The PU.1 gene can be mutated or its expression or function can be blocked by leukemogenic fusion proteins in AML. Point mutations in the RUNX1/AML1 gene are also observed in specific subtypes of AML, in addition to RUNX1 being the most frequent target for chromosomal translocation in AML. These data are persuasive evidence that impaired function of particular transcription factors contributes directly to the development of human AML, and restoring their function represents a promising target for novel therapeutic strategies in AML.
Resumo:
Terminal sialic acid residues on surface-associated glycoconjugates mediate host cell interactions of many pathogens. Addition of sialic acid-rich fetuin enhanced, and the presence of the sialidiase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid reduced, the physical interaction of Neospora caninum tachyzoites and bradyzoites with Vero cell monolayers. Thus, Neospora extracts were subjected to fetuin-agarose affinity chromatography in order to isolate components potentially interacting with sialic acid residues. SDS-PAGE and silver staining of the fetuin binding fraction revealed the presence of a single protein band of approximately 65 kDa, subsequently named NcFBP (Neospora caninum fetuin-binding protein), which was localized at the apical tip of the tachyzoites and was continuously released into the surrounding medium in a temperature-independent manner. NcFBP readily interacted with Vero cells and bound to chondroitin sulfate A and C, and anti-NcFBP antibodies interfered in tachyzoite adhesion to host cell monolayers. In additon, analysis of the fetuin binding fraction by gelatin substrate zymography was performed, and demonstrated the presence of two bands of 96 and 140 kDa exhibiting metalloprotease-activity. The metalloprotease activity readily degraded glycosylated proteins such as fetuin and bovine immunoglobulin G heavy chain, whereas non-glycosylated proteins such as bovine serum albumin and immunoglobulin G light chain were not affected. These findings suggest that the fetuin-binding fraction of Neospora caninum tachyzoites contains components that could be potentially involved in host-parasite interactions.
Resumo:
The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.
Resumo:
Bacteriorhodopsin (bR), an optoelectric protein found in Halobacterium salinarum, has the potential for use in protein hybrid sensing systems. Bacteriorhodopsin has no intrinsic sensing properties, however molecular and chemical tools permit production of bR protein hybrids with transducing and sensing properties. As a proof of concept, a maltose binding protein-bacteriorhodopsin ([MBP]-bR) hybrid was developed. It was proposed that the energy associated with target molecule binding, maltose, to the hybrid sensor protein would provide a means to directly modulate the electrical output from the MBP-bR bio-nanosensor platform. The bR protein hybrid is produced by linkage between bR (principal component of purified purple membrane [PM]) and MBP, which was produced by use of a plasmid expression vector system in Escherichia coli and purified utilizing an amylose affinity column. These proteins were chemically linked using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), which facilitates formation of an amide bond between a primary carboxylic acid and a primary amine. The presence of novel protein hybrids after chemical linkage was analyzed by SDSPAGE. Soluble proteins (MBP-only derivatives and unlinked MBP) were separated from insoluble proteins (PM derivatives and unlinked PM) using size exclusion chromatography. The putatively identified MBP-bR protein hybrid, in addition to unlinked bR, was collected. This sample was normalized for bR concentration to native PM and both were deposited onto indium tin oxide (ITO) coated glass slides by electrophoretic sedimentation. The photoresponse of both samples, activated using 100 Watt tungsten lamp at 10 cm distance, were equal at 175 mV. Testing of deposited PM with 1 mM sucrose or 1 mM maltose showed no change in the photoresponse of the xiv material, however addition of 1 mM maltose to the deposited MBP-bR linked hybrid material elicited a 57% decrease in photoresponse indicating a positive response for targeting of maltose. This chemically linked MBP-bR hybrid protein, with bacteriorhodopsin, as a photoresponsive transducing substrate, shows promise for creation of a universal sensing array by attachment of other pertinent sensing materials, in lieu of the maltose binding protein utilized. This strategy would allow significant reduction in sensor size, while increasing responsiveness and sensitivity at nano and picomolar levels.
Resumo:
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2 catalyze the interconversion of inactive and active glucocorticoids. Impaired regulation of these enzymes has been associated with obesity, diabetes, hypertension, and cardiovascular disease. Previous studies in animals and humans suggested that dehydroepiandrosterone (DHEA) has antiglucocorticoid effects, but the underlying mechanisms are unknown. In this study, DHEA treatment markedly increased mRNA expression and activity of 11beta-HSD2 in a rat cortical collecting duct cell line and in kidneys of C57BL/6J mice and Sprague-Dawley rats. DHEA-treated rats tended to have reduced urinary corticosterone to 11-dehydrocorticosterone ratios. It was found that CCAAT/enhancer-binding protein-alpha (C/EBP-alpha) and C/EBP-beta regulated HSD11B2 transcription and that DHEA likely modulated the transcription of 11beta-HSD2 in a phosphatidylinositol-3 kinase/Akt-dependent manner by increasing C/EBP-beta mRNA and protein expression. Moreover, it is shown that C/EBP-alpha and C/EBP-beta differentially regulate the expression of 11beta-HSD1 and 11beta-HSD2. In conclusion, DHEA induces a shift from 11beta-HSD1 to 11beta-HSD2 expression, increasing conversion from active to inactive glucocorticoids. This provides a possible explanation for the antiglucocorticoid effects of DHEA.
Resumo:
PURPOSE: The unfolded protein response is triggered by the accumulation of misfolded proteins within the endoplasmic reticulum. Previous studies suggest that the unfolded protein response is activated in some cancer cell lines and involved in tumor development. The role of the unfolded protein response during leukemogenesis is unknown thus far. EXPERIMENTAL DESIGN: Here, we assessed the induction of key effectors of the unfolded protein response in leukemic cells at diagnosis of 105 acute myeloid leukemia (AML) patients comprising all subtypes. We determined the formation of the spliced variant of the X-box-binding protein 1 (XBP1) mRNA, as well as expression levels of calreticulin, GRP78, and CHOP mRNA. RESULTS: The formation of the spliced variant of XBP1s was detectable in 16.2% (17 of 105) of AML patients. Consistent with activated unfolded protein response, this group also had significantly increased expression of calreticulin, GRP78, and CHOP. AML patients with activated unfolded protein response had lower WBC counts, lactate dehydrogenase levels, and more frequently, secondary AML. The incidence of fms-related tyrosine kinase 3 (FLT3) mutations was significantly lower in patients with activated unfolded protein response. In addition, an association was observed between activated unfolded protein response and deletion of chromosome 7. Finally, the clinical course of AML patients with activated unfolded protein response was more favorable with lower relapse rate (P = 0.0182) and better overall (P = 0.041) and disease-free survival (P = 0.022). CONCLUSIONS: These results suggest that the unfolded protein response is activated in a considerable subset of AML patients. AML patients with activated unfolded protein response present specific clinical characteristics and a more favorable course of the disease.
Resumo:
BACKGROUND: High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE: The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN: Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS: The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS: Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.