934 resultados para RNA, Helminth


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the RNA dodecamer 5′-GGCC(GAAA)GGCC-3′ has been determined from x-ray diffraction data to 2.3-Å resolution. In the crystal, these oligomers form double helices around twofold symmetry axes. Four consecutive non-Watson–Crick base pairs make up an internal loop in the middle of the duplex, including sheared G·A pairs and novel asymmetric A·A pairs. This internal loop sequence produces a significant curvature and narrowing of the double helix. The helix is curved by 34° from end to end and the diameter is narrowed by 24% in the internal loop. A Mn2+ ion is bound directly to the N7 of the first guanine in the Watson–Crick region following the internal loop and the phosphate of the preceding residue. This Mn2+ location corresponds to a metal binding site observed in the hammerhead catalytic RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primase DnaG of Escherichia coli requires the participation of the replicative helicase DnaB for optimal synthesis of primer RNA for lagging strand replication. However, previous studies had not determined whether the activation of the primase or its loading on the template was accomplished by a helicase-mediated structural alteration of the single-stranded DNA or by a direct physical interaction between the DnaB and the DnaG proteins. In this paper we present evidence supporting direct interaction between the two proteins. We have mapped the surfaces of interaction on both DnaG and DnaB and show further that mutations that reduce the physical interaction also cause a significant reduction in primer synthesis. Thus, the physical interaction reported here appears to be physiologically significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel RNase activity was identified in a yeast RNA polymerase I (pol I) in vitro transcription system. Transcript cleavage occurred at the 3′ end and was dependent on the presence of ternary pol I/DNA/RNA complexes and an additional protein factor not identical to transcription factor IIS (TFIIS). Transcript cleavage was observed both on arrested complexes at the linearized ends of the transcribed DNA and on intrinsic blocks of the DNA template. Shortened transcripts that remained associated within the ternary complexes were capable of resuming RNA chain elongation. Possible functions of the nuclease for transcript elongation or termination are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated, specific interactions between capsid protein (CP) subunits direct virus capsid assembly and exemplify regulated protein–protein interactions. The results presented here reveal a striking in vivo switch in CP assembly. Using cryoelectron microscopy, three-dimensional image reconstruction, and molecular modeling, we show that brome mosaic virus (BMV) CP can assemble in vivo two remarkably distinct capsids that selectively package BMV-derived RNAs in the absence of BMV RNA replication: a 180-subunit capsid indistinguishable from virions produced in natural infections and a previously unobserved BMV capsid type with 120 subunits arranged as 60 CP dimers. Each such dimer contains two CPs in distinct, nonequivalent environments, in contrast to the quasi-equivalent CP environments throughout the 180-subunit capsid. This 120-subunit capsid utilizes most of the CP interactions of the 180-subunit capsid plus nonequivalent CP–CP interactions. Thus, the CP of BMV, and perhaps other viruses, can encode CP–CP interactions that are not apparent from mature virions and may function in assembly or disassembly. Shared structural features suggest that the 120- and 180-subunit capsids share assembly steps and that a common pentamer of CP dimers may be an important assembly intermediate. The ability of a single CP to switch between distinct capsids by means of alternate interactions also implies reduced evolutionary barriers between different capsid structures. The in vivo switch between alternate BMV capsids is controlled by the RNA packaged: a natural BMV genomic RNA was packaged in 180-subunit capsids, whereas an engineered mRNA containing only the BMV CP gene was packaged in 120-subunit capsids. RNA features can thus direct the assembly of a ribonucleoprotein complex between alternate structural pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viruses (specifically in riboviruses rather than retroviruses) was constrained by the quality and quantity of available measurements and by the lack of a specific theoretical framework for converting mutation frequencies into mutation rates in this group of organisms. Here, we describe a simple relation between ribovirus mutation frequencies and mutation rates, apply it to the best (albeit far from satisfactory) available data, and observe a central value for the mutation rate per genome per replication of μg ≈ 0.76. (The rate per round of cell infection is twice this value or about 1.5.) This value is so large, and ribovirus genomes are so informationally dense, that even a modest increase extinguishes the population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In transgenic and nontransgenic plants, viruses are both initiators and targets of a defense mechanism that is similar to posttranscriptional gene silencing (PTGS). Recently, it was found that potyviruses and cucumoviruses encode pathogenicity determinants that suppress this defense mechanism. Here, we test diverse virus types for the ability to suppress PTGS. Nicotiana benthamiana exhibiting PTGS of a green fluorescent protein transgene were infected with a range of unrelated viruses and various potato virus X vectors producing viral pathogenicity factors. Upon infection, suppression of PTGS was assessed in planta through reactivation of green fluorescence and confirmed by molecular analysis. These experiments led to the identification of three suppressors of PTGS and showed that suppression of PTGS is widely used as a counter-defense strategy by DNA and RNA viruses. However, the spatial pattern and degree of suppression varied extensively between viruses. At one extreme, there are viruses that suppress in all tissues of all infected leaves, whereas others are able to suppress only in the veins of new emerging leaves. This variation existed even between closely related members of the potexvirus group. Collectively, these results suggest that virus-encoded suppressors of gene silencing have distinct modes of action, are targeted against distinct components of the host gene-silencing machinery, and that there is dynamic evolution of the host and viral components associated with the gene-silencing mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anti-idiotype approach is based on the assumption that an antibody specific for a receptor-binding domain of a ligand could be structurally related to the receptor. Therefore, a structural mimic of a receptor-binding domain, selected with an anti-ligand antibody, might be a functional substrate for the receptor. This hypothesis was addressed here by generating antibodies recognizing the Rev-nuclear export signal (NES). A functional NES is required for active export, presumably by interacting directly or indirectly with the nuclear pore complex. Anti-NES antibodies were used to isolate RNA mimics of the NES peptide from combinatorial RNA libraries. The RNA-mimics are exported actively, block Rev-dependent export of a reporter RNA, and inhibit cap-dependent U1 snRNA export in Xenopus oocytes, properties previously reported for NES-peptide conjugates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5′-Capping is an early mRNA modification that has important consequences for downstream events in gene expression. We have isolated mammalian cDNAs encoding capping enzyme. They contain the sequence motifs characteristic of the nucleotidyl transferase superfamily. The predicted mouse and human enzymes consist of 597 amino acids and are 95% identical. Mouse cDNA directed synthesis of a guanylylated 68-kDa polypeptide that also contained RNA 5′-triphosphatase activity and catalyzed formation of RNA 5′-terminal GpppG. A haploid strain of Saccharomyces cerevisiae lacking mRNA guanylyltransferase was complemented for growth by the mouse cDNA. Conversion of Lys-294 in the KXDG-conserved motif eliminated both guanylylation and complementation, identifying it as the active site. The K294A mutant retained RNA 5′-triphosphatase activity, which was eliminated by N-terminal truncation. Full-length capping enzyme and an active C-terminal fragment bound to the elongating form and not to the initiating form of polymerase. The results document functional conservation of eukaryotic mRNA guanylyltransferases from yeast to mammals and indicate that the phosphorylated C-terminal domain of RNA polymerase II couples capping to transcription elongation. These results also explain the selective capping of RNA polymerase II transcripts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotonic dystrophy (DM) is associated with expansion of CTG repeats in the 3′-untranslated region of the myotonin protein kinase (DMPK) gene. The molecular mechanism whereby expansion of the (CUG)n repeats in the 3′-untranslated region of DMPK gene induces DM is unknown. We previously isolated a protein with specific binding to CUG repeat sequences (CUG-BP/hNab50) that possibly plays a role in mRNA processing and/or transport. Here we present evidence that the phosphorylation status and intracellular distribution of the RNA CUG-binding protein, identical to hNab50 protein (CUG-BP/hNab50), are altered in homozygous DM patient and that CUG-BP/hNab50 is a substrate for DMPK both in vivo and in vitro. Data from two biological systems with reduced levels of DMPK, homozygous DM patient and DMPK knockout mice, show that DMPK regulates both phosphorylation and intracellular localization of the CUG-BP/hNab50 protein. Decreased levels of DMPK observed in DM patients and DMPK knockout mice led to the elevation of the hypophosphorylated form of CUG-BP/hNab50. Nuclear concentration of the hypophosphorylated CUG-BP/hNab50 isoform is increased in DMPK knockout mice and in homozygous DM patient. DMPK also interacts with and phosphorylates CUG-BP/hNab50 protein in vitro. DMPK-mediated phosphorylation of CUG-BP/hNab50 results in dramatic reduction of the CUG-BP2, hypophosphorylated isoform, accumulation of which was observed in the nuclei of DMPK knockout mice. These data suggest a feedback mechanism whereby decreased levels of DMPK could alter phosphorylation status of CUG-BP/hNab50, thus facilitating nuclear localization of CUG-BP/hNab50. Our results suggest that DM pathophysiology could be, in part, a result of sequestration of CUG-BP/hNab50 and, in part, of lowered DMPK levels, which, in turn, affect processing and transport of specific subclass of mRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443–473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bovine papillomavirus type 1 (BPV-1) exonic splicing suppressor (ESS) is juxtaposed immediately downstream of BPV-1 splicing enhancer 1 and negatively modulates selection of a suboptimal 3′ splice site at nucleotide 3225. The present study demonstrates that this pyrimidine-rich ESS inhibits utilization of upstream 3′ splice sites by blocking early steps in spliceosome assembly. Analysis of the proteins that bind to the ESS showed that the U-rich 5′ region binds U2AF65 and polypyrimidine tract binding protein, the C-rich central part binds 35- and 54–55-kDa serine/arginine-rich (SR) proteins, and the AG-rich 3′ end binds alternative splicing factor/splicing factor 2. Mutational and functional studies indicated that the most critical region of the ESS maps to the central C-rich core (GGCUCCCCC). This core sequence, along with additional nonspecific downstream nucleotides, is sufficient for partial suppression of spliceosome assembly and splicing of BPV-1 pre-mRNAs. The inhibition of splicing by the ESS can be partially relieved by excess purified HeLa SR proteins, suggesting that the ESS suppresses pre-mRNA splicing by interfering with normal bridging and recruitment activities of SR proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many viruses regulate protein synthesis by −1 ribosomal frameshifting using an RNA pseudoknot. Frameshifting is vital for viral reproduction. Using the information gained from the recent high-resolution crystal structure of the beet western yellow virus pseudoknot, a systematic mutational analysis has been carried out in vitro and in vivo. We find that specific nucleotide tertiary interactions at the junction between the two stems of the pseudoknot are crucial. A triplex is found between stem 1 and loop 2, and triplex interactions are required for frameshifting function. For some mutations, loss of one hydrogen bond is sufficient to abolish frameshifting. Furthermore, mutations near the 5′ end of the pseudoknot can increase frameshifting by nearly 300%, possibly by modifying ribosomal contacts. It is likely that the selection of suitable mutations can thus allow viruses to adjust frameshifting efficiencies and thereby regulate protein synthesis in response to environmental change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2′-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1°C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3′ ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3′-5′ exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-Å resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 Å and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2′-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upstream A-tracts stimulate transcription from a variety of bacterial promoters, and this has been widely attributed to direct effects of the intrinsic curvature of A-tract-containing DNA. In this work we report experiments that suggest a different mechanism for the effects of upstream A-tracts on transcription. The similarity of A-tract-containing sequences to the adenine- and thymine-rich upstream recognition elements (UP elements) found in some bacterial promoters suggested that A-tracts might increase promoter activity by interacting with the α subunit of RNA polymerase (RNAP). We found that an A-tract-containing sequence placed upstream of the Escherichia coli lac or rrnB P1 promoters stimulated transcription both in vivo and in vitro, and that this stimulation required the C-terminal (DNA-binding) domain of the RNAP α subunit. The A-tract sequence was protected by wild-type RNAP but not by α-mutant RNAPs in footprints. The effect of the A-tracts on transcription was not as great as that of the most active UP elements, consistent with the degree of similarity of the A-tract sequence to the UP element consensus. A-tracts functioned best when positioned close to the −35 hexamer rather than one helical turn farther upstream, similar to the positioning optimal for UP element function. We conclude that A-tracts function as UP elements, stimulating transcription by providing binding site(s) for the RNAP αCTD, and we suggest that these interactions could contribute to the previously described wrapping of promoter DNA around RNAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) recently has been shown to give rise to genetic interference in Caenorhabditis elegans and also is likely to be the basis for phenotypic cosuppression in plants in certain instances. While constructing a plasmid vector for transfection of trypanosome cells, we serendipitously discovered that in vivo expression of dsRNA of the α-tubulin mRNA 5′ untranslated region (5′ UTR) led to multinucleated cells with striking morphological alterations and a specific block of cytokinesis. Transfection of synthetic α-tubulin 5′ UTR dsRNA, but not of either strand individually, caused the same phenotype. On dsRNA transfection, tubulin mRNA, but not the corresponding pre-mRNA, was rapidly and specifically degraded, leading to a deficit of α-tubulin synthesis. The transfected cells were no longer capable of carrying out cytokinesis and eventually died. Analysis of cytoskeletal structures from these trypanosomes revealed defects in the microtubules of the flagellar axoneme and of the flagellar attachment zone, a complex cortical structure that we propose is essential for establishing the path of the cleavage furrow at cytokinesis. Last, dsRNA-mediated mRNA degradation is not restricted to α-tubulin mRNA but can be applied to other cellular mRNAs, thus establishing a powerful tool to genetically manipulate these important protozoan parasites.