975 resultados para RHEUMATOID FACTOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The complement factor H (CFH) gene has been recently confirmed to play an essential role in the development of age-related macular degeneration (AMD). There are conflicting reports of its role in coronary heart disease. This study was designed to investigate if, using a family-based approach, there was an association between genetic variants of the CFH gene and risk of early-onset coronary heart disease. Methods: We evaluated 6 SNPs and 5 common haplotypes in the CFH gene amongst 1494 individuals in 580 Irish families with at least one member prematurely affected with coronary heart disease. Genotypes were determined by multiplex SNaPshot technology. Results: Using the TDT/S-TDT test, we did not find an association between any of the individual SNPs or any of the 5 haplotypes and early-onset coronary heart disease. Conclusion: In this family-based study, we found no association between the CFH gene and early-onset coronary heart disease. © 2007 Meng et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. Institut für Molekulare Infektionsbiologie, D-97070 Würzburg, Germany. Osmotic stress was found to induce biofilm formation in a Staphylococcus aureus mucosal isolate. Inactivation of a global regulator of the bacterial stress response, the alternative transcription factor sigma(B), resulted in a biofilm-negative phenotype and loss of salt-induced biofilm production. Complementation of the mutant strain with an expression plasmid encoding sigma(B) completely restored the wild-type phenotype. The combined data suggest a critical role of sigma(B) in S. aureus biofilm regulation under environmental stress conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our previous studies have shown that overexpression of beta1,4-galactosyltransferase1 (beta1,4GT1) leads to increased apoptosis induced by cycloheximide (CHX) in SMMC-7721 human hepatocarcinoma cells. However, the role of beta1,4GT1 in apoptosis remains unclear. Here we demonstrated that cell surface beta1,4GT1 inhibited the autophosphorylation of epidermal growth factor receptor (EGFR) especially at Try 1068. The phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated protein kinase1/2 (ERK1/2), which are downstream molecules of EGFR, were also reduced in cell surface beta1,4GT1-overexpressing cells. Furthermore, the translocations of Bad and Bax that are regulated by PKB/Akt and ERK1/2 were also increased in these cells. As a result, the release of cytochrome c from mitochondria to cytosol was increased and caspase-3 was activated. In contrast, RNAi-mediated knockdown of beta1,4GT1 increased the autophosphorylation of EGFR. These results demonstrated that cell surface beta1,4GT1 may negatively regulate cell survival possibly through inhibiting and modulating EGFR signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin D3 is found to play a crucial role not only in progression through the G1 phase as a regulatory subunit of cyclin-dependent kinase 4 (CDK 4) and CDK 6, but also in many other aspects such as cell cycle, cell differentiation, transcriptional regulation and apoptosis. In this work, we screened a human fetal liver cDNA library using human cyclin D3 as bait and identified human eukaryotic initiation factor 3 p28 protein (eIF3k) as a partner of cyclin D3. The association of cyclin D3 with eIF3k was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscopic analysis. We found that cyclin D3 specifically interacted with eIF3k through its C-terminal domain. Immunofluorescence experiments showed that eIF3k distributed both in nucleus and cytoplasm and colocalized with cyclin D3. In addition, the cellular translation activity in HeLa cells was upregulated by cyclin D3 overexpression and the mRNA levels are constant. These data provide a new clue to our understanding of the cellular function of cyclin D3.