989 resultados para RBCL SEQUENCE ANALYSES
Resumo:
As a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI). However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood. Here we trace the evolution of dosage compensation using extensive transcriptome data from males and females representing all major mammalian lineages and birds. Our analyses suggest that the X has become globally upregulated in marsupials, whereas we do not detect a global upregulation of this chromosome in placental mammals. However, we find that a subset of autosomal genes interacting with X-linked genes have become downregulated in placentals upon the emergence of sex chromosomes. Thus, different driving forces may underlie the evolution of XCI and the highly efficient equilibration of X expression levels between the sexes observed for both of these lineages. In the egg-laying monotremes and birds, which have partially homologous sex chromosome systems, partial upregulation of the X (Z in birds) evolved but is largely restricted to the heterogametic sex, which provides an explanation for the partially sex-biased X (Z) expression and lack of global inactivation mechanisms in these lineages. Our findings suggest that dosage reductions imposed by sex chromosome differentiation events in amniotes were resolved in strikingly different ways.
Resumo:
Identification and relative quantification of hundreds to thousands of proteins within complex biological samples have become realistic with the emergence of stable isotope labeling in combination with high throughput mass spectrometry. However, all current chemical approaches target a single amino acid functionality (most often lysine or cysteine) despite the fact that addressing two or more amino acid side chains would drastically increase quantifiable information as shown by in silico analysis in this study. Although the combination of existing approaches, e.g. ICAT with isotope-coded protein labeling, is analytically feasible, it implies high costs, and the combined application of two different chemistries (kits) may not be straightforward. Therefore, we describe here the development and validation of a new stable isotope-based quantitative proteomics approach, termed aniline benzoic acid labeling (ANIBAL), using a twin chemistry approach targeting two frequent amino acid functionalities, the carboxylic and amino groups. Two simple and inexpensive reagents, aniline and benzoic acid, in their (12)C and (13)C form with convenient mass peak spacing (6 Da) and without chromatographic discrimination or modification in fragmentation behavior, are used to modify carboxylic and amino groups at the protein level, resulting in an identical peptide bond-linked benzoyl modification for both reactions. The ANIBAL chemistry is simple and straightforward and is the first method that uses a (13)C-reagent for a general stable isotope labeling approach of carboxylic groups. In silico as well as in vitro analyses clearly revealed the increase in available quantifiable information using such a twin approach. ANIBAL was validated by means of model peptides and proteins with regard to the quality of the chemistry as well as the ionization behavior of the derivatized peptides. A milk fraction was used for dynamic range assessment of protein quantification, and a bacterial lysate was used for the evaluation of relative protein quantification in a complex sample in two different biological states
Resumo:
BACKGROUND: Maternal pregestational diabetes is a well-known risk factor for congenital anomalies. This study analyses the spectrum of congenital anomalies associated with maternal diabetes using data from a large European database for the population-based surveillance of congenital anomalies. METHODS: Data from 18 population-based EUROCAT registries of congenital anomalies in 1990-2005. All malformed cases occurring to mothers with pregestational diabetes (diabetes cases) were compared to all malformed cases in the same registry areas to mothers without diabetes (non-diabetes cases). RESULTS: There were 669 diabetes cases and 92,976 non diabetes cases. Odds ratios in diabetes pregnancies relative to non-diabetes pregnancies comparing each EUROCAT subgroup to all other non-chromosomal anomalies combined showed significantly increased odds ratios for neural tube defects (anencephaly and encephalocele, but not spina bifida) and several subgroups of congenital heart defects. Other subgroups with significantly increased odds ratios were anotia, omphalocele and bilateral renal agenesis. Frequency of hip dislocation was significantly lower among diabetes (odds ratio 0.15, 95% CI 0.05-0.39) than non-diabetes cases. Multiple congenital anomalies were present in 13.6 % of diabetes cases and 6.1 % of non-diabetes cases. The odds ratio for caudal regression sequence was very high (26.40,95% CI 8.98-77.64), but only 17% of all caudal regression cases resulted from a pregnancy with pregestational diabetes. CONCLUSIONS: The increased risk of congenital anomalies in pregnancies with pregestational diabetes is related to specific non-chromosomal congenital anomalies and multiple congenital anomalies and not a general increased risk.
Resumo:
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
Resumo:
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.
Resumo:
Background and Aims: Vitamin D is an important modulatorof numerous cellular processes. Some of us recently observedan association of the 1a-hydroxylase promoter polymorphismCYP27B1-1260 rs10877012 with sustained virologic response (SVR)in a relatively small number of German patients with chronichepatitis C. In the present study, we aimed to validate thisassociation in a large and well characterized patient cohort, theSwiss Hepatitis C Cohort Study (SCCS). In addition, we examinedthe effect of vitamin D on the hepatitis C virus (HCV) life cyclein vitro.Methods: CYP27B1-1260 rs10877012 and IL28B rs12979860 singlenucleotide polymorphisms (SNPs) were genotyped in 1049 patientswith chronic hepatitis C from the SCCS, of whom 698 were treatedwith pegylated interferon-a (PEG-IFN-a) and ribavirin. In addition,112 patients with spontaneous clearance of HCV were examined.SNPs were correlated with variables reflecting the natural courseand treatment outcome of chronic hepatitis C. The effect of1,25-(OH)2D3 (calcitriol) on HCV replication and viral particleproduction was investigated in vitro using human hepatoma celllines (Huh-7.5) harbouring subgenomic replicons and cell culturederivedHCV.Results: The CYP27B1-1260 rs10877012 genotype was notassociated with SVR in patients with the good-response IL28Brs1279860 CC genotype. However, in patients with poor-responseIL28B rs1279860 genotype CT and TT, CYP27B1-1260 rs10877012was a significant independent predictor of SVR (15% difference inSVR between rs10877012 genotype AA vs. CC, p = 0.030, OR = 1.495,95% CI = 1.038-2.152). The CYPB27-1260 rs10877012 genotype wasneither associated with spontaneous clearance of HCV, nor withliver fibrosis progression rate, inflammatory activity of chronichepatitis C, or HCV viral load. Physiological doses of 1,25-(OH)2D3did not significantly affect HCVRNA replication or infectiousparticle production in vitro.Conclusions: The results of this large-scale genetic validationstudy reveal a role of vitamin D metabolism in the responseto treatment in chronic hepatitis C, but 1,25-(OH)2D3 does notexhibit a significant direct inhibitory antiviral effect. Thus, theability of vitamin D to modulate immunity against HCV shouldbe investigated.
Resumo:
A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.
Resumo:
Abstract: The AU-rich elements (AREs) consisting of repeated AUUUA motifs confer rapid degradation to many cellular mRNAs when present in the 3' untranslated region (3'UTR). We have studied the instability of interleukin-6 mRNA by grafting its 3' untranslated region to a stable green fluorescent protein mRNA. Subsequent scanning mutagenesis identified two conserved elements, which taken together account for most of the instability. The first corresponds to a short non-canonical AU-rich element. The other comprises a sequence predicted to form astern-loop structure. Both elements need to be present in order to confer full instability (Paschoud et al. 2006). Destabilization of ARE-containing mRNAs is thought to involve ARE-binding proteins such as AUF1. We tested whether AUF1 binding to interleukin-6 mRNA correlates with decreased mRNA stability. Overexpression of myc-tagged p37AUFl and p42AUF1 as well as suppression of all four AUF1 isoforms by RNA interference stabilized the interleukin-6 mRNA. Furthermore, the interleukin-6 mRNA co-immunoprecipitated specifically with myc-tagged p37AUF1 and p42AUF1 in cell extracts. Both the stabilization and AUF1-binding required the non-canonical AU-rich sequence. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes interleukin6 mRNA degradation. The combination of mRNA co-immunoprecipitation with microarray technology revealed that at least 500 cellular mRNAs associate with AUF1. Résumé: "La présence d'éléments riches en A et U (ARE), en particulier les motifs répétés d'AUUUA dans la région 3' non traduite, confère une dégradation rapide à beaucoup d'ARN cellulaires. Nous avons étudié l'instabilité de l'ARN codant pour l'interleukine 6 en greffant sa région 3' non traduite à un ARN stable codant pour la protéine fluorescente verte. La mutagenèse systématique des séquences non traduites a permis l'identification de deux éléments conservés qui confèrent l'instabilité à l'ARN. Le premier correspond à un élément AU-riche non canonique court. Le second comporte une structure en 'épingle à cheveux'. Tous les deux éléments doivent être présents afin de conférer une instabilité complète (Paschoud et al. 2006). On pense que des protéines telles que AUF1, pouvant se lier aux éléments ARE, sont impliquées dans la dégradation des ARN messagers. Nous avons examiné si la liaison de AUFl sur l'ARN de l'interleukine 6 corrèle avec une stabilité diminuée. La surexpression des protéines p37AUF1 et de p42AUF1 myc-étiquetées ainsi que la suppression de chacun des quatre isoformes de AUF1 par interférence d'ARN a stabilisé l'ARN messager d'interleukine 6. En outre, cet ARN co-immunoprécipite spécifiquement avec p37AUF1 et p42AUF1 dans des extraits cellulaires. La présence de l'élément AUriche non canonique est nécessaire pour la stabilisation de l'ARN et sa liaison avec AUFI. Ces résultats indiquent qu'AUF1 se lie à l'élément AU-riche in vivo et favorise la dégradation de l'ARN messager d'interleukine 6. La combinaison des techniques de coimmunoprécipitation des ARN messagers et des analyses par `microarray' indique qu'au moins 500 ARN cellulaires s'associent à AUF1.
Resumo:
In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.
Resumo:
BACKGROUND: Pathological complete response (pCR) following chemotherapy is strongly associated with both breast cancer subtype and long-term survival. Within a phase III neoadjuvant chemotherapy trial, we sought to determine whether the prognostic implications of pCR, TP53 status and treatment arm (taxane versus non-taxane) differed between intrinsic subtypes. PATIENTS AND METHODS: Patients were randomized to receive either six cycles of anthracycline-based chemotherapy or three cycles of docetaxel then three cycles of eprirubicin/docetaxel (T-ET). pCR was defined as no evidence of residual invasive cancer (or very few scattered tumour cells) in primary tumour and lymph nodes. We used a simplified intrinsic subtypes classification, as suggested by the 2011 St Gallen consensus. Interactions between pCR, TP53 status, treatment arm and intrinsic subtype on event-free survival (EFS), distant metastasis-free survival (DMFS) and overall survival (OS) were studied using a landmark and a two-step approach multivariate analyses. RESULTS: Sufficient data for pCR analyses were available in 1212 (65%) of 1856 patients randomized. pCR occurred in 222 of 1212 (18%) patients: 37 of 496 (7.5%) luminal A, 22 of 147 (15%) luminal B/HER2 negative, 51 of 230 (22%) luminal B/HER2 positive, 43 of 118 (36%) HER2 positive/non-luminal, 69 of 221(31%) triple negative (TN). The prognostic effect of pCR on EFS did not differ between subtypes and was an independent predictor for better EFS [hazard ratio (HR) = 0.40, P < 0.001 in favour of pCR], DMFS (HR = 0.32, P < 0.001) and OS (HR = 0.32, P < 0.001). Chemotherapy arm was an independent predictor only for EFS (HR = 0.73, P = 0.004 in favour of T-ET). The interaction between TP53, intrinsic subtypes and survival outcomes only approached statistical significance for EFS (P = 0.1). CONCLUSIONS: pCR is an independent predictor of favourable clinical outcomes in all molecular subtypes in a two-step multivariate analysis. CLINICALTRIALSGOV: EORTC 10994/BIG 1-00 Trial registration number NCT00017095.
Resumo:
A repeated DNA element in Xenopus laevis is described that is present in about 7500 copies dispersed throughout the genome. It was first identified in the 5' flanking region of one vitellogenin gene and was therefore named the Vi element. Seven copies are present within the vitellogenin gene region, three of them within introns of the genes A1, A2 and B2, and the other four copies in the gene flanking regions. Four of these copies have been sequenced. The Vi element is bounded by a well-conserved 13 base-pair inverted repeat; in addition, it is flanked by a three base-pair direct repeat that appears to be site-specific. The length of these four copies varies from 112 to 469 base-pairs; however, sequence homology between the different copies is very high. Their structural characteristics suggest that length heterogeneity may have arisen by either unequal recombinations, deletions or tandem duplications. Altogether, the characteristics and properties of the Vi element indicate that it might represent a mobile genetic element. One of the four copies sequenced is inserted close (position -535) to the transcription initiation site of the vitellogenin gene B2 in a region otherwise showing considerable homology with the closely related gene B1. Nevertheless, the presence of the Vi element does not seem to influence significantly the estrogen-controlled expression of gene B2. In addition, three alleles of this gene created by length polymorphism in intron 3 and in the Vi element inserted near the transcription initiation site are described.
Resumo:
Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.
Resumo:
The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition. Mixtures defined with amino acids present at the corresponding positions in the native sequence were among the most active for all of the libraries. Somewhat surprisingly, a higher number of native amino acids were identifiable by using amidated COOH-terminal rather than free COOH-terminal PS-SCL. Also, our data clearly indicate that when using PS-SCL longer than optimal, frame shifts occur frequently and should be taken into account. Biometric analysis of the data obtained with the amidated COOH-terminal nonapeptide library allowed the identification of the native ligand as the sequence with the highest score in a public human protein database. However, the adequacy of the PS-SCL data for the identification for the peptide ligand varied depending on the PS-SCL used. Altogether these results provide insight into the potential of PS-SCL for the identification of CTL-defined tumor-derived antigenic sequences and may significantly implement our ability to interpret the results of these analyses.