982 resultados para Quantum Chromodynamics (QCD),
Resumo:
We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This is an introductory course to the Lanczos Method and Density Matrix Renormalization Group Algorithms (DMRG), two among the leading numerical techniques applied in studies of low-dimensional quantum models. The idea of studying the models on clusters of a finite size in order to extract their physical properties is briefly discussed. The important role played by the model symmetries is also examined. Special emphasis is given to the DMRG.
Resumo:
We describe the derivation of an effective Hamiltonian which involves explicit hadron degrees of freedom and consistently combines chiral symmetry and color confinement. We use a method known as Fock-Tani (FT) representation and a quark model formulated in the context of Coulomb gauge QCD. Using this Hamiltonian, we evaluate the dissociation cross section of J/psi in collision with rho.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Stationary states of an electron in thin GaAs elliptical quantum rings are calculated within the effective-mass approximation. The width of the ring varies smoothly along the centerline, which is an ellipse. The solutions of the Schrödinger equation with Dirichlet boundary conditions are approximated by a product of longitudinal and transversal wave functions. The ground-state probability density shows peaks: (i) where the curvature is larger in a constant-with ring, and (ii) in thicker parts of a circular ring. For rings of typical dimensions, it is shown that the effects of a varying width may be stronger than those of the varying curvature. Also, a width profile which compensates the main localization effects of the varying curvature is obtained.
Resumo:
O desenvolvimento de linhagens resistentes de Plasmodium falciparum tem encorajado a busca por novas drogas antimalariais. A febrifugina é uma substância natural com alta atividade contra o P. falciparum que apresenta propriedade emética e toxicidade para o fígado tal que não permitem o seu uso clínico. A busca por análogos que possam ter uma performance clínica melhor é um tema de pesquisa atual. Nosso objetivo é investigar a estrutura eletrônica teórica de uma família de derivados da febrifugina empregando cálculos semi-empíricos de orbitais moleculares, procurando por índices eletrônicos que possam ajudar a modelar novos derivados mais eficientes. Os resultados teóricos mostram que para as moléculas mais seletivas existe um agrupamento dos valores de determinados índices em intervalos bem definidos. O modelo proposto para se obter alta seletividade foi testado com sucesso.
Resumo:
The quantum Brownian particle, immersed in a heat bath, is described by a statistical operator whose evolution is ruled by a generalized master equation (GME). The heat bath's degrees of freedom are considered to be either white-noise or colored-noise correlated, while the GME is considered under either the Markov or non-Markov approaches. The comparisons between these considerations are fully developed, and their physical meaning is discussed.
Resumo:
We derive Virasoro constraints for the zero momentum part of the QCD-like partition functions in the sector of topological charge v. The constraints depend on the topological charge only through the combination N-f +betav/2 where the value of the Dyson index beta is determined by the reality type of the fermions. This duality between flavor and topology is inherited by the small-mass expansion of the partition function and all spectral sum rules of inverse powers of the eigenvalues of the Dirac operator. For the special case beta =2 but arbitrary topological charge the Virasoro constraints are solved uniquely by a generalized Kontsevich model with the potential V(X) = 1/X.
Resumo:
The quasicausal expansion of the quantum Liouville propagator is introduced into the Weyl-Wigner picture. The zeroth-order term is shown to lead to the statistical quasiclassical method of Lee and Scully [J. Chem. Phys. 73, 2238 (1980)].
Resumo:
We apply the supersymmetry approach to one-dimensional quantum systems with spatially dependent mass, by including their ordering ambiguities dependence. In this way we extend the results recently reported in the literature. Furthermore, we point out a connection between these systems and others with constant masses. This is done through convenient transformations in the coordinates and wave functions.