916 resultados para Quantitative
Resumo:
The coevolution of parental investment and offspring solicitation is driven by partly different evolutionary interests of genes expressed in parents and their offspring. In species with biparental care, the outcome of this conflict ma!: be influenced by the sexual conflict over parental investment, Models for the resolution of such family conflicts have made so far untested assumptions about genetic variation and covariation in the parental resource provisioning response and the level of offspring solicitation. Using a combination of cross-fostering and begging playback experiments, we show that, in the great tit (Parus major), (i) the begging call intensity of nestlings depends on their common origin, suggesting genetic variation for this begging display, (ii) only mothers respond to begging calls by increased food provisioning, and (iii! the size of the parental response is positively related to the begging call intensity of nestlings in the maternal but not paternal line. This study indicates that genetic covariation, its differential expression in the maternal and paternal lines and/or early environmental and parental effects need to be taken into account when predicting the phenotypic outcome of the conflict over investment between genes expressed in each parent and the offspring. [References: 36]
Resumo:
The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.
Resumo:
There are numerous statistical methods for quantitative trait linkage analysis in human studies. An ideal such method would have high power to detect genetic loci contributing to the trait, would be robust to non-normality in the phenotype distribution, would be appropriate for general pedigrees, would allow the incorporation of environmental covariates, and would be appropriate in the presence of selective sampling. We recently described a general framework for quantitative trait linkage analysis, based on generalized estimating equations, for which many current methods are special cases. This procedure is appropriate for general pedigrees and easily accommodates environmental covariates. In this paper, we use computer simulations to investigate the power robustness of a variety of linkage test statistics built upon our general framework. We also propose two novel test statistics that take account of higher moments of the phenotype distribution, in order to accommodate non-normality. These new linkage tests are shown to have high power and to be robust to non-normality. While we have not yet examined the performance of our procedures in the context of selective sampling via computer simulations, the proposed tests satisfy all of the other qualities of an ideal quantitative trait linkage analysis method.
Resumo:
The etiology of complex diseases is heterogeneous. The presence of risk alleles in one or more genetic loci affects the function of a variety of intermediate biological pathways, resulting in the overt expression of disease. Hence, there is an increasing focus on identifying the genetic basis of disease by sytematically studying phenotypic traits pertaining to the underlying biological functions. In this paper we focus on identifying genetic loci linked to quantitative phenotypic traits in experimental crosses. Such genetic mapping methods often use a one stage design by genotyping all the markers of interest on the available subjects. A genome scan based on single locus or multi-locus models is used to identify the putative loci. Since the number of quantitative trait loci (QTLs) is very likely to be small relative to the number of markers genotyped, a one-stage selective genotyping approach is commonly used to reduce the genotyping burden, whereby markers are genotyped solely on individuals with extreme trait values. This approach is powerful in the presence of a single quantitative trait locus (QTL) but may result in substantial loss of information in the presence of multiple QTLs. Here we investigate the efficiency of sequential two stage designs to identify QTLs in experimental populations. Our investigations for backcross and F2 crosses suggest that genotyping all the markers on 60% of the subjects in Stage 1 and genotyping the chromosomes significant at 20% level using additional subjects in Stage 2 and testing using all the subjects provides an efficient approach to identify the QTLs and utilizes only 70% of the genotyping burden relative to a one stage design, regardless of the heritability and genotyping density. Complex traits are a consequence of multiple QTLs conferring main effects as well as epistatic interactions. We propose a two-stage analytic approach where a single-locus genome scan is conducted in Stage 1 to identify promising chromosomes, and interactions are examined using the loci on these chromosomes in Stage 2. We examine settings under which the two-stage analytic approach provides sufficient power to detect the putative QTLs.
Resumo:
We propose robust and e±cient tests and estimators for gene-environment/gene-drug interactions in family-based association studies. The methodology is designed for studies in which haplotypes, quantitative pheno- types and complex exposure/treatment variables are analyzed. Using causal inference methodology, we derive family-based association tests and estimators for the genetic main effects and the interactions. The tests and estimators are robust against population admixture and strati¯cation without requiring adjustment for confounding variables. We illustrate the practical relevance of our approach by an application to a COPD study. The data analysis suggests a gene-environment interaction between a SNP in the Serpine gene and smok- ing status/pack years of smoking that reduces the FEV1 volume by about 0.02 liter per pack year of smoking. Simulation studies show that the pro- posed methodology is su±ciently powered for realistic sample sizes and that it provides valid tests and effect size estimators in the presence of admixture and stratification.
Resumo:
PURPOSE: To quantify optical coherence tomography (OCT) images of the central retina in patients with blue-cone monochromatism (BCM) and achromatopsia (ACH) compared with healthy control individuals. METHODS: The study included 15 patients with ACH, 6 with BCM, and 20 control subjects. Diagnosis of BCM and ACH was established by visual acuity testing, morphologic examination, color vision testing, and Ganzfeld ERG recording. OCT images were acquired with the Stratus OCT 3 (Carl Zeiss Meditec AG, Oberkochen, Germany). Foveal OCT images were analyzed by calculating longitudinal reflectivity profiles (LRPs) from scan lines. Profiles were analyzed quantitatively to determine foveal thickness and distances between reflectivity layers. RESULTS: Patients with ACH and BCM had a mean visual acuity of 20/200 and 20/60, respectively. Color vision testing results were characteristic of the diseases. The LRPs of control subjects yielded four peaks (P1-P4), presumably representing the RPE (P1), the ovoid region of the photoreceptors (P2), the external limiting membrane (ELM) (P3), and the internal limiting membrane (P4). In patients with ACH, P2 was absent, but foveal thickness (P1-P4) did not differ significantly from that in the control subjects (187 +/- 20 vs. 192 +/- 14 microm, respectively). The distance from P1 to P3 did not differ significantly (78 +/- 10 vs. 82 +/- 5 microm) between ACH and controls subjects. In patients with BCM, P3 was lacking, and P2 advanced toward P1 compared with the control subjects (32 +/- 6 vs. 48 +/- 4 microm). Foveal thickness (153 +/- 16 microm) was significantly reduced compared with that in control subjects and patients with ACH. CONCLUSIONS: Quantitative OCT image analysis reveals distinct patterns for controls subjects and patients with ACH and BCM, respectively. Quantitative analysis of OCT imaging can be useful in differentiating retinal diseases affecting photoreceptors. Foveal thickness is similar in both normal subjects and patients with ACH but is decreased in patients with BCM.
Resumo:
Hereditary spastic paraparesis (HSP) is a heterogeneous group of neurodegenerative disorders with progressive lower limb spasticity, categorized into pure (p-HSP) and complicated forms (c-HSP). The purpose of this study was to evaluate if brain volumes in HSP were altered compared with a control population. Brain volumes were determined in patients suffering from HSP, including both p-HSP (n = 21) and c-HSP type (n = 12), and 30 age-matched healthy controls, using brain parenchymal fractions (BPF) calculated from 3D MRI data in an observer-independent procedure. In addition, the tissue segments of grey and white matter were analysed separately. In HSP patients, BPF were significantly reduced compared with controls both for the whole patient group (P < 0.001) and for both subgroups, indicating considerable brain atrophy. In contrast to controls who showed a decline of brain volumes with age, this physiological phenomenon was less pronounced in HSP. Therefore, global brain parenchyma reduction, involving both grey and white matter, seems to be a feature in both subtypes of HSP. Atrophy was more pronounced in c-HSP, consistent with the more severe phenotype including extramotor involvement. Thus, global brain atrophy, detected by MRI-based brain volume quantification, is a biological marker in HSP subtypes.
Resumo:
Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.
Resumo:
To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.
Resumo:
STUDY DESIGN: The structural integrity of the nucleus pulposus (NP) of intervertebral discs was targeted by enzyme-specific degradations to correlate their effects to the magnetic resonance (MR) signal. OBJECTIVE: To develop quantitative MR imaging as an accurate and noninvasive diagnostic tool to better understand and treat disc degeneration. SUMMARY OF BACKGROUND DATA: Quantitative MR analysis has been previously shown to reflect not only the disc matrix composition, but also the structural integrity of the disc matrix. Further work is required to identify the contribution of the structural integrity versus the matrix composition to the MR signal. METHODS: The bovine coccygeal NPs were injected with either enzyme or buffer, incubated at 37 degrees C as static, unloaded and closed 3-disc segments, and analyzed by a 1.5-Tesla MR scanner to measure MR parameters. RESULTS: Collagenase degradation of the NP significantly decreased the relaxation times, slightly decreased the magnetization transfer ratio, and slightly increased the apparent diffusion coefficient. Targeting the proteoglycan and/or hyaluronan integrity by trypsin and hyaluronidase did not significantly affect the MR parameters, except for an increase in the apparent diffusion coefficient of the disc after trypsin treatment. CONCLUSIONS: Our results demonstrate that changes in the structural integrity of matrix proteins can be assessed by quantitative MR.
Resumo:
Cigarettes may contain up to 10% by weight additives which are intended to make them more attractive. A fast and rugged method for a cigarette-screening for additives with medium volatility was developed using automatic headspace solid phase microextraction (HS-SPME) with a 65 microm carbowax-divinylbenzene fiber and gas chromatography-mass spectrometry (GC-MS) with standard electron impact ionisation. In three runs, each cigarette sample was extracted in closed headspace vials using basic, acidic and neutral medium containing 0.5 g NaCl or Na2SO4. Furthermore, the method was optimized for quantitative determination of 17 frequently occurring additives. The practical applicability of the method was demonstrated for cigarettes from 32 brands.