984 resultados para Pulse widths


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse oximetry is commonly used as an arterial blood oxygen saturation (SaO(2)) measure. However, its other serial output, the photoplethysmography (PPG) signal, is not as well studied. Raw PPG signals can be used to estimate cardiovascular measures like pulse transit time (PTT) and possibly heart rate (HR). These timing-related measurements are heavily dependent on the minimal variability in phase delay of the PPG signals. Masimo SET (R) Rad-9 (TM) and Novametrix Oxypleth oximeters were investigated for their PPG phase characteristics on nine healthy adults. To facilitate comparison, PPG signals were acquired from fingers on the same hand in a random fashion. Results showed that mean PTT variations acquired from the Masimo oximeter (37.89 ms) were much greater than the Novametrix (5.66 ms). Documented evidence suggests that I ms variation in PTT is equivalent to I mmHg change in blood pressure. Moreover, the PTT trend derived from the Masimo oximeter can be mistaken as obstructive sleep apnoeas based on the known criteria. HR comparison was evaluated against estimates attained from an electrocardiogram (ECG). Novametrix differed from ECG by 0.71 +/- 0.58% (p < 0.05) while Masimo differed by 4.51 +/- 3.66% (p > 0.05). Modem oximeters can be attractive for their improved SaO(2) measurement. However, using raw PPG signals obtained directly from these oximeters for timing-related measurements warrants further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics obtained from peripheral pulses can be used to assess the status of cardiovascular system of subjects. However, nonintrusive techniques are preferred when prolonged monitoring is required for their comfort. Pulse transit time ( PTT) measurement has showed its potentials to monitor timing changes in peripheral pulse in cardiovascular and respiratory studies. In children, the common peripheries used for these studies are fingers or toes. Presently, there is no known study conducted on children to investigate the possible physiologic parameters that can confound PTT measure at these sites. In this study, PTT values from both peripheral sites were recorded from 55 healthy Caucasian children ( 39 male) with mean age of 8.4 +/- 2.3 years ( range 5 - 12 years). Peripheries' path length, heart rate, systolic blood pressure, diastolic blood pressure ( DBP) and mean arterial pressure ( MAP) were measured to investigate their contributions to PTT measurement. The results reveal that PTT is significantly related to all parameters ( P< 0.05), except for DBP and MAP. Age is observed to be the dominant factor that affects PTT at both peripheries in a child. Regression equations for PTT were derived for measuring from a finger and toe, ( 6.09 age + 189.2) ms and ( 6.70 age + 243.0) ms, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse transit time (PTT) is a non-invasive measure of arterial compliance. It can be used to assess instantaneous blood pressure (BP) changes in continual cardiovascular measurement such as during overnight respiratory sleep studies. In these studies, periodic changes in limb position can occur randomly. However, little is known about their possible effects on PTT monitored on the various limbs. The objective of this study was to evaluate PTT differences on all four limbs during two positional changes (lowering and raising of a limb). Ten healthy adults (seven male) with a mean age of 27.0 years were recruited in this study. The results showed that the limb that underwent a positional change had significant (p < 0.05) local PTT differences when compared to its nominal baseline value, whereas PTT changes in the other remaining limbs were insignificant (p > 0.05). The mean PTT value measured from a vertically-raised limb increased by 42.7 ms, while it decreased by 28.1 ms with a half-lowered limb. The PTT differences observed during positional change can be contributed to by the complex interactions between hydrostatic pressure changes, autonomic and local autoregulation experienced in these limbs. Hence the findings herein suggest that PTT is able to reflect local circulatory responses despite changes in the position of other limbs. This can be useful in prolonged clinical observations where limb movements are expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of a planar microwave imaging system with step-frequency synthesized pulse for possible use in medical applications is described. Simple phantoms, consisting of a cylindrical plastic container with air or oil imitating fatty tissues and small highly reflective objects emulating tumors, are scanned with a probe antenna over a planar surface in the X-band. Different calibration schemes are considered for successful detection of these objects. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Atrial fibrillation in the elderly is common and potentially life threatening. The classical sign of atrial fibrillation is an irregularly irregular pulse. Objective The objective of this research was to determine the accuracy of pulse palpation to detect atrial fibrillation. Methods We searched Medline, EMBASE, and the reference lists of review articles for studies that compared pulse palpation with the electrocardiogram (ECG) diagnosis of atrial fibrillation. Two reviewers independently assessed the search results to determine the eligibility of studies, extracted data, and assessed the quality of the studies. Results We identified 3 studies (2385 patients) that compared pulse palpation with ECG. The estimated sensitivity of pulse palpation ranged from 91% to 100%, while specificity ranged from 70% to 77%. Pooled sensitivity was 94% (95% confidence interval [CI], 84%-97%) and pooled specificity was 72% (95% CI 69%-75%). The pooled positive likelihood ratio was 3.39, while the pooled negative likelihood ratio was 0.10. Conclusions Pulse palpation has a high sensitivity but relatively low specificity for atrial fibrillation. It is therefore useful for ruling out atrial fibrillation. It may also be a useful screen to apply opportunistically for previously undetected atrial fibrillation. Assuming a prevalence of 3% for undetected atrial fibrillation in patients older than 65 years, and given the test's sensitivity and specificity, opportunistic pulse palpation in this age group would detect an irregular pulse in 30% of screened patients, requiring further testing with ECG. Among screened patients, 0.2% would have atrial fibrillation undetected with pulse palpation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wide-line H-1 nuclear magnetic resonance (NMR) spectrum of paper in equilibrium with ambient humidity consists of super-imposed relatively broad and narrow lines. The narrower line is of the order of 2 kHz wide at half the maximum height, while the broader line is of the order of 40 kHz in width at half height. On the basis of these line widths, the narrow line is assigned to water sorbed to the paper, and the broad line to the polymeric constituents of the paper. It was not possible to distinguish between the various polymeric components of paper contributing to the H-1 NMR spectra. A modified Goldman-Shen pulse sequence was used to generate a spatial magnetisation gradient between the polymer and water phases. The exchange of magnetisation between protons associated with water and those associated with the macromolecules in paper was observed. The exchange of magnetisation is discussed within a heat transfer model for homonuclear dipolar coupling, with exchange being characterised by a spin-diffusion coefficient. Consideration of the magnitude of the initial rate of the exchange process and estimates of the spin-spin relaxation times based on H-1 line widths indicate that some water must exist in a sufficiently immobile state as to allow homonuclear dipolar interactions between adjacent polymer and water protons. Thus, water sorbed onto paper must exist in at least two states in mass exchange with each other. This observation allows certain conclusions to be drawn about the ratio of free/bound water as a function of moisture content and the dispersal of water within the polymer matrix.