857 resultados para Puberty onset
Resumo:
During development of the primary olfactory system, axon targeting is inaccurate and axons inappropriately project within the target layer or overproject into the deeper layers of the olfactory bulb. As a consequence there is considerable apoptosis of primary olfactory neurons during embryonic and postnatal development and axons of the degraded neurons need to be removed. Olfactory ensheathing cells (OECs) are the glia of the primary olfactory nerve and are known to phagocytose axon debris in the adult and postnatal animal. However, it is unclear when phagocytosis by OECs first commences. We investigated the onset of phagocytosis by OECs in the developing mouse olfactory system by utilizing two transgenic reporter lines: OMP-ZsGreen mice which express bright green fluorescent protein in primary olfactory neurons, and S100β-DsRed mice which express red fluorescent protein in OECs. In crosses of these mice, the fate of the degraded axon debris is easily visualized. We found evidence of axon degradation at embryonic day (E)13.5. Phagocytosis of the primary olfactory axon debris by OECs was first detected at E14.5. Phagocytosis of axon debris continued into the postnatal animal during the period when there was extensive mistargeting of olfactory axons. Macrophages were often present in close proximity to OECs but they contributed only a minor role to clearing the axon debris, even after widespread degeneration of olfactory neurons by unilateral bulbectomy and methimazole treatment. These results demonstrate that from early in embryonic development OECs are the primary phagocytic cells of the primary olfactory nerve.
Resumo:
Sleep disturbance after mild traumatic brain injury (mTBI) is commonly reported as debilitating and persistent. However, the nature of this disturbance is poorly understood. This study sought to characterize sleep after mTBI compared with a control group. A cross-sectional matched case control design was used. Thirty-three persons with recent mTBI (1–6 months ago) and 33 age, sex, and ethnicity matched controls completed established questionnaires of sleep quality, quantity, timing, and sleep-related daytime impairment. The mTBI participants were compared with an independent sample of close-matched controls (CMCs; n=33) to allow partial internal replication. Compared with controls, persons with mTBI reported significantly greater sleep disturbance, more severe insomnia symptoms, a longer duration of wake after sleep onset, and greater sleep-related impairment (all medium to large effects, Cohen's d>0.5). No differences were found in sleep quantity, timing, sleep onset latency, sleep efficiency, or daytime sleepiness. All findings except a measure of sleep timing (i.e., sleep midpoint) were replicated for CMCs. These results indicate a difference in the magnitude and nature of perceived sleep disturbance after mTBI compared with controls, where persons with mTBI report poorer sleep quality and greater sleep-related impairment. Sleep quantity and timing did not differ between the groups. These preliminary findings should guide the provision of clearer advice to patients about the aspects of their sleep that may change after mTBI and could inform treatment selection.