982 resultados para Protein delivery
Resumo:
Sporulation in Bacillus subtilis culminates with the formation of a dormant endospore. The endospore (or spore) is one of the most resilient cell types known and can remain viable in the environment for extended periods of time. Contributing to the spore’s resistance and its ability to interact with and monitor its immediate environment is the coat, the outermost layer of B. subtilis spores. The coat is composed by over 70 different proteins, which are produced at different stages in sporulation and orderly assembled around the developing spore.(...)
Resumo:
Gene therapy presents an ideal strategy for the treatment of genetic as well as acquired diseases, such as cancer and typically involves the insertion of a functioning gene into cells to correct a cellular dysfunction or to provide a new cellular function. Gene delivery vectors are based in two models: viral and non-viral. Viral vectors have high transfection efficiency but their major barrier is immunogenicity. Since the non-viral vectors have no immunogenicity, these have been widely studied. Gold nanoparticles have been proposed as optimal delivery systems of genetic material, due their small size, high surface-to-volume ratio and the ability to be functionalized with multiple molecules. In the present work, an AuNP-based formulation was developed to deliver a plasmid in a colorectal cancer cell line, containing as reporter gene the gene encoding to EGFP. The delivery system resulted from the functionalization of 14 nm AuNP with a PEG layer (4300114 PEG chains/AuNP), which increases stability and biocompatibility of AuNPs; quaternary ammonium groups which provide positive charges that allow electrostatic binding of plasmid, which is considered the therapeutic agent to be transported into cells. The system developed was characterized by UV-vis spectroscopy, DLS, TEM and by electrophoretic mobility, yielding a formulation with 113.5 nm.Transfection efficiency of the formulation developed was evaluated through PCR and through EGFP expression by fluorescence microscopy and fluorescence spectroscopy. The internalization was observed 3h post transfection; however a low level of EGFP expression was achieved. After 24h of incubation, EGFP expression increases just 3 times compared to non-transfected cells. The commercial system (Lipofectamine) expressed EGFP 5 times more than the system developed AuNP@PEG@R4N+@pEGFP. This difference could be related to lower translocation to the nucleus.
Resumo:
My master studies have resulted in the following publication: Martins P, Rosa D, Fernandes AR, Baptista PV. 2014. Nanoparticle Drug Delivery Systems: Recent Patents and Applications in Nanomedicine. Recent Patents in Nanomedicine. 3(2):105-118.
Resumo:
This dissertation focuses on the study of frataxin, a small mitochondrial protein whose deficiency is associated with the neurodegenerative disease Friedreich's ataxia (FRDA). Aiming at a better understanding of frataxin conformational and functional properties, two lines of research were followed: first, the effect of FRDA-related mutations in human frataxin (FXN) were studied and the role of oxidative stress related modification addressed; second, yeast frataxin (Yfh1) orthologue was used to explore the conformational and functional properties of the protein.(...)
Resumo:
Salmonella enterica serovars are Gram-negative facultative intracellular bacterial pathogens that infect a wide variety of animals. Salmonella infections are common in humans, causing usually typhoid fever and gastrointestinal diseases. Salmonella enterica serovar Typhimurium (S. Typhimurium), which is a leading cause of human gastroenteritis, has been extensively used to study the molecular pathogenesis of Salmonella, because of the availability of sophisticated genetic tools, and of suitable animal and tissue culture models mimicking different aspects of Salmonella infections.(...)
Resumo:
All life forms need to monitor carbon and energy availability to survive and this is especially true for plants which must integrate unavoidable environmental conditions with metabolism for cellular homeostasis maintenance. Sugars, in the heart of metabolism, are now recognized as crucial signaling molecules that translate those conditions. One such signal is trehalose 6- phosphate (T6P), a phosphorylated dimer of glucose molecules which levels correlate well with those of sucrose (Suc). Central integrators of stress and energy regulation include the conserved plant Snf1-related kinase1 (SnRK1) which respond to low cellular energy levels by up-regulating energy conserving and catabolic metabolism and down-regulating energy consuming processes. In 2009 T6P was shown to inhibit SnRK1. The in vitro inhibition of SnRK1 by T6P was confirmed in vivo through the observation that genes normally induced by SnRK1 were repressed by T6P and vice-versa, promoting growth processes. These observations provided a model for the regulation of growth by sugar.(...)
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
INTRODUCTION: West Nile virus (WNV) is a flavivirus with a natural cycle involving mosquitoes and birds. Over the last 11 years, WNV has spread throughout the Americas with the imminent risk of its introduction in Brazil. METHODS: Envelope protein domain III of WNV (rDIII) was bacterially expressed and purified. An enzyme-linked immunosorbent assay with WNV rDIII antigen was standardized against mouse immune fluids (MIAFs) of different flavivirus. RESULTS: WNV rDIII reacted strongly with St. Louis encephalitis virus (SLEV) MIAF but not with other flaviviruses. CONCLUSIONS: This antigen may be a potentially useful tool for serologic diagnosis and may contribute in future epidemiological surveillance of WNV infections in Brazil.
Resumo:
The obligate intracellular bacterium Chlamydia trachomatis is a human pathogen of major public health significance. Strains can be classified into 15 main serovars (A to L3) that preferentially cause ocular infections (A-C), genital infections (D-K) or lymphogranuloma venereum (LGV) (L1-L3), but the molecular basis behind their distinct tropism, ecological success and pathogenicity is not welldefined. Most chlamydial research demands culture in eukaryotic cell lines, but it is not known if stains become laboratory adapted. By essentially using genomics and transcriptomics, we aimed to investigate the evolutionary patterns underlying the adaptation of C. trachomatis to the different human tissues, given emphasis to the identification of molecular patterns of genes encoding hypothetical proteins, and to understand the adaptive process behind the C. trachomatis in vivo to in vitro transition. Our results highlight a positive selection-driven evolution of C. trachomatis towards nichespecific adaptation, essentially targeting host-interacting proteins, namely effectors and inclusion membrane proteins, where some of them also displayed niche-specific expression patterns. We also identified potential "ocular-specific" pseudogenes, and pointed out the major gene targets of adaptive mutations associated with LGV infections. We further observed that the in vivo-derived genetic makeup of C. trachomatis is not significantly compromised by its long-term laboratory propagation. In opposition, its introduction in vitro has the potential to affect the phenotype, likely yielding virulence attenuation. In fact, we observed a "genital-specific" rampant inactivation of the virulence gene CT135, which may impact the interpretation of data derived from studies requiring culture. Globally, the findings presented in this Ph.D. thesis contribute for the understanding of C.trachomatis adaptive evolution and provides new insights into the biological role of C. trachomatishypothetical proteins. They also launch research questions for future functional studies aiming toclarify the determinants of tissue tropism, virulence or pathogenic dissimilarities among C. trachomatisstrains.
Resumo:
Leishmaniasis is one of the six major tropical diseases targeted by the World Health Organization. It is a life-threatening disease of medical, social and economic importance in endemic areas. No vaccine is yet available for human use, and chemotherapy presents several problems. Pentavalent antimonials have been the drugs of choice to treat the disease for more than six decades; however, they exhibit high toxicity and are not indicated for children, for pregnant or breastfeeding women or for chronically ill patients. Amphotericin B (AmpB) is a second-line drug, and although it has been increasingly used to treat visceral leishmaniasis (VL), its clinical use has been hampered due to its high toxicity. This review focuses on the development and in vivo usage of new delivery systems for AmpB that aim to decrease its toxicity without altering its therapeutic efficacy. These new formulations, when adjusted with regard to their production costs, may be considered new drug delivery systems that promise to improve the treatment of leishmaniasis, by reducing the side effects and the number of doses while permitting a satisfactory cost-benefit ratio.
Resumo:
RESUMO: Clostridium difficile é presentemente a principal causa de doença gastrointestinal associada à utilização de antibióticos em adultos. C. difficile é uma bactéria Gram-positiva, obrigatoriamente anaeróbica, capaz de formar endósporos. Tem-se verificado um aumento dos casos de doença associada a C. difficile com sintomas mais severos, elevadas taxas de morbilidade, mortalidade e recorrência, em parte, devido à emergência de estirpes mais virulentas, mas também devido à má gestão do uso de antibióticos. C. difficile produz duas toxinas, TcdA e TcdB, que são os principais fatores de virulência e responsáveis pelos sintomas da doença. Estas são codificadas a partir do Locus de Patogenicidade (PaLoc) que codifica ainda para um regulador positivo, TcdR, uma holina, TcdE, e um regulador negativo, TcdC. Os esporos resistentes ao oxigénio são essenciais para a transmissão do organismo e recorrência da doença. A expressão dos genes do PaLoc ocorre em células vegetativas, no final da fase de crescimento exponencial, e em células em esporulação. Neste trabalho construímos dois mutantes de eliminação em fase dos genes tcdR e tcdE. Mostrámos que a auto-regulação do gene tcdR não é significativa. No entanto, tcdR é sempre necessário para a expressão dos genes presentes no PaLoc. Trabalho anterior mostrou que, com a exceção de tcdC, os demais genes do PaLoc são expressos no pré-esporo. Mostrámos aqui que TcdA é detectada à superfície do esporo maduro e que a eliminação do tcdE não influencia a acumulação de TcdA no meio de cultura ou em associação às células ou ao esporo. Estas observações têm consequências para o nosso entendimento do processo infecioso: sugeremque o esporo possa ser também um veículo para a entrega da toxina nos estágios iniciais da infecção, que TcdA possa ser libertada durante a germinação do esporo, e que o esporo possa utilizar o mesmo receptor reconhecido por TcdA para a ligação à mucosa do cólon.---------------------------ABSTRACT: Clostridium difficile is currently the major cause of antibiotic-associated gastrointestinal diseases in adults. This is a Gram-positive bacterium, endospore-forming and an obligate anaerobe that colonizes the gastrointestinal tract. Recent years have seen a rise in C. difficile associated disease (CDAD) cases, associated with more severe disease symptoms, higher rates of morbidity, mortality and recurrence, which were mostly caused due to the emergence of “hypervirulent” strains but also due to changing patterns of antibiotics use. C. difficile produces two potent toxins, TcdA and TcdB, which are the main virulence factors and the responsible for the disease symptoms. These are codified from a Pathogenicity Locus (PaLoc), composed also by the positive regulator, TcdR, the holin-like protein, TcdE, and a negative regulator, TcdC. Besides the toxins, the oxygen-resistant spores are also essential for transmission of the organism through diarrhea; moreover, spores can accumulate in the environment or in the host, which will cause disease recurrence. The expression of the PaLoc genes occurs in vegetative cells, at the end of the exponential growth phase, and in sporulating cells. In this work, we constructed two in-frame deletion mutants of tcdR and tcdE. We showed that the positive auto regulation of tcdR is not significant. However, tcdR is always necessary for the expression of the PaLoc genes. A previous work showed that, except tcdC, all the PaLoc genes are expressed in the forespore. Here, we detected TcdA at the spore surface. Furthermore, we showed that the in-frame deletion of tcdE does not affect the accumulation of TcdA in the culture medium or in association with cells or spores. This data was important for us to conclude about the infeccious process: it suggests that the spore may be the vehicle for the delivery of TcdA in early stages of infection, that TcdA may be released during spores germination and that this spore may use the same receptor recognized by TcdA to bind to the colonic mucosa.
Resumo:
Many viruses have developed numerous strategies to recruit and take advantage of cellular protein degradation pathways to evade the cellular viral immune system. One such virus is the Kaposi´s Sarcoma associated herpesvirus (KSHV), first discovered in Kaposi´s Sarcoma lesions found in AIDS patients. Latency-Associated Nuclear Antigen (LANA) is a KSHV multifunctional protein responsible for tethering viral DNA to the chromosome ensuring maintenance and segregation of the viral genome during cell division. Besides its main role of viral maintenance, LANA also physically interacts with several host proteins to modulate cell functions. One such function is to recruit the EC5S ubiquitin-ligase complex by interacting with Elongin BC complex and Cullin 5 protein, which in turn ubiquitinate substrates such as NF-κB and p53 to allow persistent viral infection. Like any other post-translation modifications, ubiquitination is reversible through deubiquitination enzymes (DUBs). LANA also interacts with ubiquitin specific protease 7 (USP7), a deubiquitination enzyme involved in regulation of several proteins including p53. Interaction with USP7 is made through a conserved peptide motif, which is also present in LANA. This work addresses the role of LANA in the recruitment and modulation of the ubiquitination and deubiquitination pathways. Despite the continued efforts in uncovering new LANA interacting partners to form a functional EC5S ubiquitin-ligase complex, only MHV-68 LANA interacted directly with Elongin BC, other interactions were not direct and may require a linker protein. On the other hand, LANA interaction with USP7 was able to be analysed by X-ray structure determination. In addition to a conserved P/AxxS motif, a novel Glutamine (Gln) residue from KSHV LANA was shown to make a specific interaction with USP7. This Gln residue is also present in other herpesvirus protein and hence it might be a conserved motif within herpesviruses.
Resumo:
The cell wall of Staphylococcus aureus is a highly complex network mainly composed of highly cross-linked peptidoglycan (PG) and teichoic acids (TAs), both important for the maintenance of the integrity and viability of bacteria. The penicillin binding proteins (PBPs), which catalyse the final stage of PG biosynthesis, are targets of β-lactam antibiotics and have been a key focus of antibacterial research. S. aureus has four native PBPs, PBP1-4 carried by both methicillin-sensitive (MSSA) and –resistant (MRSA) strains. PBP4 is required for the synthesis of the highly cross-linked PG and, as shown in recent studies, is essential for the expression of β-lactam resistance in community-acquired strains (CA-MRSA). This protein has a septal localization that seems to be spatially and temporally regulated by an unknown intermediate of the wall teichoic acids (WTA) biosynthesis pathway. Therefore, if WTA synthesis is compromised, PBP4 becomes dispersed throughout the entire cell membrane. The aim of this project was to identify the WTA precursor responsible for the septal recruitment of PBP4. In order to do so, inducible mutants of tarB and tarL genes in the background of NCTCPBP4-YFP were constructed allowing for the study of PBP4 localization in the presence and absence of these specific tar genes.With this work we were able to show that the absence of TarB or TarL leads to the delocalization of PBP4, indicating that TarL or a protein/WTA precursor whose localization/synthesis is dependent on TarL is responsible for the recruitment of PBP4.