878 resultados para Prospective temporal control
Resumo:
This paper reports on a study that focused on growth of understanding about teaching geometry by a group of prospective teachers engaged in lesson plan study within a computer-supported collaborative learning (CSCL) environment. Participation in the activity was found to facilitate considerable growth in the participants’ pedagogical-content knowledge (PCK). Factors that influenced growth in PCK included the nature of the lesson planning task, the cognitive scaffolds inserted into the CSCL virtual space, the meta-language scaffolds provided to the participants, and the provision of both private and public discourse spaces. The paper concludes with recommendations for enhancing effective knowledge-building discourse about mathematics PCK within prospective teacher education CSCL environments.
Resumo:
In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.
Resumo:
Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous network-induced delays and packet losses. Different from the majority of existing NCS control methods, the proposed approach addresses co-design of both network and controller. It also alleviates the requirements of precise process models and full understanding of NCS network dynamics. For a series of possible sensor-to-actuator delays, the controller computes a series of corresponding redundant control values. Then, it sends out those control values in a single packet to the actuator. Once receiving the control packet, the actuator measures the actual sensor-to-actuator delay and computes the control signals from the control packet. When packet dropout occurs, the actuator utilizes past control packets to generate an appropriate control signal. The effectiveness of the approach is demonstrated through examples.
Resumo:
This paper investigates the use of visual artifacts to represent a complex adaptive system (CAS). The integrated master schedule (IMS) is one of those visuals widely used in complex projects for scheduling, budgeting, and project management. In this paper, we discuss how the IMS outperforms the traditional timelines and acts as a ‘multi-level and poly-temporal boundary object’ that visually represents the CAS. We report the findings of a case study project on the way the IMS mapped interactions, interdependencies, constraints and fractal patterns in a complex project. Finally, we discuss how the IMS was utilised as a complex boundary object by eliciting commitment and development of shared mental models, and facilitating negotiation through the layers of multiple interpretations from stakeholders.
Resumo:
Is it possible to control identities using performance management systems (PMSs)? This paper explores the theoretical fusion of management accounting and identity studies, providing a synthesised view of control, PMSs and identification processes. It argues that the effective use of PMSs generates a range of obtrusive mechanistic and unobtrusive organic controls that mediate identification processes to achieve a high level of identity congruency between individuals and collectives—groups and organisations. This paper contends that mechanistic control of PMSs provides sensebreaking effects and also creates structural conditions for sensegiving in top-down identification processes. These processes encourage individuals to continue the bottom-up processes of sensemaking, enacting identity and constructing identity narratives. Over time, PMS activities and conversations periodically mediate several episode(s) of identification to connect past, current and future identities. To explore this relationship, the dual locus of control—collectives and individuals—is emphasised to explicate their interplay. This multidisciplinary approach contributes to explaining the multidirectional effects of PMSs in obtrusive as well as unobtrusive ways, in order to control the nature of collectives and individuals in organisations.
Resumo:
There is a continued need to consider ways to prevent early adolescent engagement in a variety of harmful risk-taking behaviours for example, violence, road-related risks and alcohol use. The current prospective study examined adolescents’ reports of intervening to try and stop friends’ engagement in such behaviours among 207 early adolescents (mean age = 13.51 years, 50.1% females). Findings showed that intervening behaviour after three months was predicted by the confidence to intervene which in turn was predicted by student and teacher support although not parental support. The findings suggest that the benefits of positive relationship experiences might extend to the safety of early adolescent friendship groups particularly through the development of confidence to try and stop friends’ risky and dangerous behaviours. Findings from the study support the important role of the school in creating a culture of positive adolescent behaviour whereby young people take social responsibility.
Resumo:
This paper is directed towards providing an answer to the question, ”Can you control the trajectory of a Lagrangian float?” Being a float that has minimal actuation (only buoyancy control), their horizontal trajectory is dictated through drifting with ocean currents. However, with the appropriate vertical actuation and utilising spatio-temporal variations in water speed and direction, we show here that broad controllabilty results can be met such as waypoint following to keep a float inside of a bay or out of a designated region. This paper extends theory experimen- tally evaluted on horizontally actuated Autonomous Underwater Vehicles (AUVs) for trajectory control utilising ocean forecast models and presents an initial investi- gation into the controllability of these minimally actuated drifting AUVs. Simulated results for offshore coastal and within highly dynamic tidal bays illustrate two tech- niques with the promise for an affirmative answer to the posed question above.
Resumo:
Is it possible to control identities using performance management systems (PMSs)? This paper explores the theoretical fusion of management accounting and identity studies, providing a synthesised view of control, PMSs and identification processes. It argues that the effective use of PMSs generates a range of obtrusive mechanistic and unobtrusive organic controls that mediate identification processes to achieve a high level of identity congruency between individuals and collectives—groups and organisations. This paper contends that mechanistic control of PMSs provides sensebreaking effects and also creates structural conditions for sensegiving in top-down identification processes. These processes encourage individuals to continue the bottom-up processes of sensemaking, enacting identity and constructing identity narratives. Over time, PMS activities and conversations periodically mediate several episode(s) of identification to connect past, current and future identities. To explore this relationship, the dual locus of control—collectives and individuals—is emphasised to explicate their interplay. This multidisciplinary approach contributes to explaining the multidirectional effects of PMSs in obtrusive as well as unobtrusive ways, in order to control the nature of collectives and individuals in organisations.
Resumo:
The compressed gas industry and government agencies worldwide utilize "adiabatic compression" testing for qualifying high-pressure valves, regulators, and other related flow control equipment for gaseous oxygen service. This test methodology is known by various terms including adiabatic compression testing, gaseous fluid impact testing, pneumatic impact testing, and BAM testing as the most common terms. The test methodology will be described in greater detail throughout this document but in summary it consists of pressurizing a test article (valve, regulator, etc.) with gaseous oxygen within 15 to 20 milliseconds (ms). Because the driven gas1 and the driving gas2 are rapidly compressed to the final test pressure at the inlet of the test article, they are rapidly heated by the sudden increase in pressure to sufficient temperatures (thermal energies) to sometimes result in ignition of the nonmetallic materials (seals and seats) used within the test article. In general, the more rapid the compression process the more "adiabatic" the pressure surge is presumed to be and the more like an isentropic process the pressure surge has been argued to simulate. Generally speaking, adiabatic compression is widely considered the most efficient ignition mechanism for directly kindling a nonmetallic material in gaseous oxygen and has been implicated in many fire investigations. Because of the ease of ignition of many nonmetallic materials by this heating mechanism, many industry standards prescribe this testing. However, the results between various laboratories conducting the testing have not always been consistent. Research into the test method indicated that the thermal profile achieved (i.e., temperature/time history of the gas) during adiabatic compression testing as required by the prevailing industry standards has not been fully modeled or empirically verified, although attempts have been made. This research evaluated the following questions: 1) Can the rapid compression process required by the industry standards be thermodynamically and fluid dynamically modeled so that predictions of the thermal profiles be made, 2) Can the thermal profiles produced by the rapid compression process be measured in order to validate the thermodynamic and fluid dynamic models; and, estimate the severity of the test, and, 3) Can controlling parameters be recommended so that new guidelines may be established for the industry standards to resolve inconsistencies between various test laboratories conducting tests according to the present standards?
Resumo:
Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.
Resumo:
Background: The current model of care for breast cancer is focused on disease treatment followed by ongoing recurrence surveillance. This approach lacks attention to the patients’ physical and functional well-being. Breast cancer treatment sequelae can lead to physical impairments and functional limitations. Common impairments include pain, fatigue, upper extremity dysfunction, lymphedema, weakness, joint arthralgia, neuropathy, weight gain, cardiovascular effects, and osteoporosis. Evidence supports prospective surveillance for early identification and treatment as a means to prevent or mitigate many of these concerns. Purpose: This paper proposes a prospective surveillance model for physical rehabilitation and exercise that can be integrated with disease treatment to create a more comprehensive approach to survivorship health care. The goals of the model are to promote surveillance for common physical impairments and functional limitations associated with breast cancer treatment, to provide education to facilitate early identification of impairments, to introduce rehabilitation and exercise intervention when physical impairments are identified and to promote and support physical activity and exercise behaviors through the trajectory of disease treatment and survivorship. Methods: The model is the result of a multi-disciplinary meeting of research and clinical experts in breast cancer survivorship and representatives of relevant professional and advocacy organizations. Outcomes: The proposed model identifies time points during breast cancer care for assessment of and education about physical impairments. Ultimately, implementation of the model may influence incidence and severity of breast cancer treatment related physical impairments. As such, the model seeks to optimize function during and following treatment and positively influence a growing survivorship community.
Resumo:
Background: Known risk factors for secondary lymphedema only partially explain who develops lymphedema following cancer, suggesting that inherited genetic susceptibility may influence risk. Moreover, identification of molecular signatures could facilitate lymphedema risk prediction prior to surgery or lead to effective drug therapies for prevention or treatment. Recent advances in the molecular biology underlying development of the lymphatic system and related congenital disorders implicate a number of potential candidate genes to explore in relation to secondary lymphedema. Methods and Results: We undertook a nested case-control study, with participants who had developed lymphedema after surgical intervention within the first 18 months of their breast cancer diagnosis serving as cases (n=22) and those without lymphedema serving as controls (n=98), identified from a prospective, population-based, cohort study in Queensland, Australia. TagSNPs that covered all known genetic variation in the genes SOX18, VEGFC, VEGFD, VEGFR2, VEGFR3, RORC, FOXC2, LYVE1, ADM and PROX1 were selected for genotyping. Multiple SNPs within three receptor genes, VEGFR2, VEGFR3 and RORC, were associated with lymphedema defined by statistical significance (p<0.05) or extreme risk estimates (OR<0.5 or >2.0). Conclusions: These provocative, albeit preliminary, findings regarding possible genetic predisposition to secondary lymphedema following breast cancer treatment warrant further attention for potential replication using larger datasets.
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.
Resumo:
Bauxite refinery residues (red mud) are derived from the Bayer process by the digestion of crushed bauxite in concentrated sodium hydroxide at elevated temperatures and pressures. This slurry residue, if untreated, is unsuitable for discharge directly into the environment and is usually stored in tailing dams. The liquid portion has the potential for discharge, but requires pre-treatment before this can occur. The seawater neutralisation treatment facilitates a significant reduction in pH and dissolved metal concentrations, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. The hydrotalcite-like compounds, precipitated during seawater neutralisation, also remove a range of transition metals, oxy-anions and other anionic species through a combination of intercalation and adsorption reactions: smaller anions are intercalated into the hydrotalcite matrix, while larger molecules are adsorbed on the particle surfaces. A phenomenon known as ‘reversion’ can occur if the seawater neutralisation process is not properly controlled. Reversion causes an increase in the pH and dissolved impurity levels of the neutralised effluent, rendering it unsuitable for discharge. It is believed that slow dissolution of components of the red mud residue and compounds formed during the neutralisation process are responsible for reversion. This investigation looked at characterising natural hydrotalcite (Mg6Al2(OH)16(CO3)∙4H2O) and ‘Bayer’ hydrotalcite (synthesised using the seawater neutralisation process) using a variety of techniques including X-ray diffraction, infrared and Raman spectroscopy, and thermogravimetric analysis. This investigation showed that Bayer hydrotalcite is comprised of a mixture of 3:1 and 4:1 hydrotalcite structures and exhibited similar chemical characteristic to the 4:1 synthetic hydrotalcite. Hydrotalcite formed from the seawater neutralisation of Bauxite refinery residues has been found not to cause reversion. Other components in red mud were investigated to determine the cause of reversion and this investigation found three components that contributed to reversion: 1) tricalcium aluminate, 2) hydrocalumite and 3) calcium hydroxide. Increasing the amount of magnesium in the neutralisation process has been found to be successful in reducing reversion.
Resumo:
School belonging, measured as a unidimensional construct, is an important predictor of negative affective problems in adolescents, including depression and anxiety symptoms. A recent study found that one such measure, the Psychological Sense of School Membership (PSSM) scale, actually comprises three factors: Caring Relations, Acceptance, and Rejection. We explored the relations of these factors with negative affect in a sample of 504 Australian grade 7 and 8 students who completed the PSSM and Children’s Depression Inventory (CDI) at three time points. Each school belonging factor contributed to the prediction of negative affect in cross-sectional analyses. Scores on the Acceptance factor predicted subsequent negative affect for boys and girls, even controlling for prior negative affect. For girls, the Rejection factor was also significant in the prospective analysis. These findings have implications for the design of interventions and are further confirmation that school belonging should be considered a multidimensional construct.