882 resultados para Prolonged mechanical ventilation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum scandium binary alloys represent a promising precipitation-hardening alloy system. However, the hardness of the binary alloys decreases with the rapid coarsening of Al3Sc precipitate during high-temperature aging. In the current study, we report a new approach to compensate for the loss of mechanical properties by combining rapid solidification with very small ternary addition of transition metal Ni. This addition yields dispersion, and at a critical concentration improves the mechanical properties. We explore additions of a maximum of 0.06 at. pct of Nickel to a binary Al-0.14 at. pct Sc alloy, which yield nickel-rich dispersions. We report two kinds of biphasic dispersions containing AlNi2Sc/Al9Ni2 and alpha-Al/Al9Ni2 phase combinations. The maximum improvement in mechanical properties occurs with the addition of 0.045 at. pct Ni with a yield strength of 239 +/- A 7 MPa for an aging treatment at 583 K (310 A degrees C) for 15 hours. DOI: 10.1007/s11661-013-1624-z (C) The Minerals, Metals & Materials Society and ASM International 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (A (IP)) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The A (IP) and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low A (IP). The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill's anisotropic equation are compared with that obtained experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the mechanical properties of a framework structure, Cu2F(HF)(HF2)(pyz)(4)](SbF6)(2)](n) (pyz = pyrazine), in which Cu(pyz)(2)](2+) layers are pillared by HF2- anions containing the exceptionally strong F-H center dot center dot center dot F hydrogen bonds. Nanoindentation studies on single-crystals clearly demonstrate that such bonds are extremely robust and mechanically comparable with coordination bonds in this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable composites comprising of modified starch and modified nanoclay have been prepared. Starch has been modified by esterification and subsequently crosslinked. The thermal, mechanical, and biodegradation characteristics of the composites have been investigated. The compressive properties of the composites with the addition of nanoclay were twice that of crosslinked starch phthalate without addition of nanoclay. Predictive theories were used to analyze the obtained experimental results. SEM studies on fracture morphology indicated quasi-brittle fracture. Flexural properties showed considerable improvement due to nanoclay addition. The water uptake increased up to 6% nanoclay, beyond which the uptake decreased. Biodegradation studies showed an initial time lag prior to the onset of degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports effect of small ternary addition of In on the microstructure, mechanical property and oxidation behaviour of a near eutectic suction cast Nb-19.1 at-%Si-1.5 at-%In alloy. The observed microstructure consists of a combination of two kinds of lamellar structure. They are metal-intermetallic combinations of Nb-ss-beta-Nb5Si3 and Nb-ss-alpha-Nb5Si3 respectively having 40-60 nm lamellar spacings. The alloy gives compressive strength of 3 GPa and engineering strain of similar to 3% at room temperature. The composite structure also exhibits a large improvement in oxidation resistance at high temperature (1000 degrees C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural changes of Ni-rich NiTi shape memory alloy during thermal and thermo-mechanical cycling have been investigated using Electron Back Scattered Diffraction. A strong dependence of the orientation of the prior austenite grain on the misorientation development has been observed during thermal cycling and thermo-mechanical cycling. This effect is more pronounced at the grain boundaries compared to grain interior. At a larger applied strain, the volume fraction of stabilized martensite phase increases with increase in the number of cycling. Deformation within the martensite leads to stabilization of martensitic phase even at temperatures slightly above the austenite finish temperature. Modulus variation with respect to temperature has been explained on the basis of martensitic transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CrSi and Cr1-x Fe (x) Si particles embedded in a CrSi2 matrix have been prepared by hot pressing from CrSi1.9, CrSi2, and CrSi2.1 powders produced by ball milling using either WC or stainless steel milling media. The samples were characterized by powder X-ray diffraction, scanning, and transmission electron microscopy and electron microprobe analysis. The final crystallite size of CrSi2 obtained from the XRD patterns is about 40 and 80 nm for SS- and WC-milled powders, respectively, whereas the size of the second phase inclusions in the hot pressed samples is about 1-5 mu m. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, and figure of merit (ZT) were analyzed in the temperature range from 300 to 800 K. While the ball-milling process results in a lower electrical resistivity and thermal conductivity due to the presence of the inclusions and the refinement of the matrix microstructure, respectively, the Seebeck coefficient is negatively affected by the formation of the inclusions which leads to a modest improvement of ZT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure-property correlation in the lead-free piezoelectric (1 - x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0 < x <= 0.11), temperature, electric field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for the precritical compositions, 0 <= x <= 0.05, (ii) cubiclike for 0.06 <= x <= 0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07 <= x < 0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (similar to 50A degrees) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to the widely reported beneficial aspects of spark plasma sintering in developing materials with better properties, we report here two interesting aspects recorded with difficult-to-sinter titanium diboride: (a) in situ formation of second phase (TiB) and (b) inferior hardness (by similar to 30%) and elastic modulus (by similar to 20%) for spark plasma sintered TiB2, with respect to hot pressed TiB2. The formation of TiB is discussed with reference to the enhanced reaction kinetics in the presence of pulsed electric field. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of hybridizing micro-Ti with nano-SiC particulates on the microstructural and the mechanical behaviour of Mg-5.6Ti composite were investigated. Mg materials containing micron-sized Ti particulates hybridized with different amounts of nano-size SiC particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. The microstructural and mechanical behaviour of the developed Mg hybrid composites were studied in comparison with Mg-5.6Ti. Microstructural characterization revealed grain refinement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-SiC particulates. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + 1.0SiC)(BM) hybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction, when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg-(5.6Ti + 1.0SiC)(BM) hybrid composites. The superior strength properties of the Mg-(5.6Ti + x-SiC)(BM) hybrid composites when compared to Mg-5.6Ti is attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles, achieved by nano-SiC addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanoindentation technique can be employed in shape memory alloys (SMAs) to discern the transformation temperatures as well as to characterize their mechanical behavior. In this paper, we use it with simultaneous measurements of the mechanical and the electrical contact resistances (ECR) at room temperature to probe two SMAs: austenite (RTA) and martensite (RTM). Two different types of indenter tips - Berkovich and spherical - are employed to examine the SMAs' indentation responses as a function of the representative strain, epsilon(R). In Berkovich indentation, because of the sharp nature of the tip, and in consequence the high levels of strain imposed, discerning the two SMAs on the basis of the indentation response alone is difficult. In the case of the spherical tip, epsilon(R) is systematically varied and its effect on the depth recovery ratio, eta(d), is examined. Results indicate that RTA has higher eta(d) than RTM, but the difference decreases with increasing epsilon(R) such that eta(d) values for both the alloys would be similar in the fully plastic regime. The experimental trends in eta(d) vs. epsilon(R) for both the alloys could be described well with a eta(d) proportional to (epsilon(R))(-1) type equation, which is developed on the basis of a phenomenological model. This fit, in turn, directs us to the maximum epsilon(R), below which plasticity underneath the indenter would not mask the differences in the two SMAs. It was demonstrated that the ECR measurements complement the mechanical measurements in demarcating the reverse transformation from martensite to austenite during unloading of RTA, wherein a marked increase in the voltage was noted. A correlation between recovery due to reverse transformation during unloading and increase in voltage (and hence the electrical resistance) was found. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the effect of mechanical strain on the electrostrictive behavior of catalytically grown cellular structure of carbon nanotube (CNT). In the small strain regime, where the stress-strain behavior of the material is linear, application of an electric-field along the mechanical loading direction induces an instantaneous increase in the stress and causes an increase in the apparent Young's modulus. The instantaneous increase in the stress shows a cubic-polynomial dependence on the electric-field, which is attributed to the non-linear coupling of the mechanical strain and the electric-field induced polarization of the CNT. The electrostriction induced actuation becomes >100 times larger if the CNT sample is pre-deformed to a small strain. However, in the non-linear stress-strain regime, although a sharp increase in the apparent Young's modulus is observed upon application of an electric-field, no instantaneous increase in the stress occurs. This characteristic suggests that the softening due to the buckling of individual CNT compensates for any instantaneous rise in the electrostriction induced stress at the higher strains. We also present an analytical model to elucidate the experimental observations. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional coupled multi-physics based model has been developed to accurately compute the effects of electrostatic, mechanical, and thermal field interactions on the electronic energy band structure in group III-nitrides thin film heterostructures. Earlier models reported in published literature assumes electro-mechanical field with uniform temperature thus neglecting self-heating. Also, the effects of diffused interface on the energy band structure were not studied. We include these effects in a self-consistent manner wherein the transport equation is introduced along with the electro-mechanical models, and the lattice structural variation as observed in experiments are introduced at the interface. Due to these effects, the electrostatic potential distribution in the heterostructure is altered. The electron and hole ground state energies decrease by 5% and 9%, respectively, at a relative temperature of 700 K, when compared with the results obtained from the previously reported electro-mechanical model assuming constant and uniform temperature distribution. A diffused interface decreases the ground state energy of electrons and holes by about 11% and 9%, respectively, at a relative temperature of 700 K when compared with the predictions based on uniform temperature based electro-mechanical model. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solidification pathways of Nb rich Nb-Si alloys when processed under non-equilibrium conditions require understanding. Continuing with our earlier work on alloying additions in single eutectic composition 1,2], we report a detailed characterization of the microstructures of Nb-Si binary alloys with wide composition range (10-25 at% Si). The alloys are processed using chilled copper mould suction casting. This has allowed us to correlate the evolution of microstructure and phases with different possible solidification pathways. Finally these are correlated with mechanical properties through studies on deformation using mechanical testing under indentation and compressive loads. It is shown that microstructure modification can significantly influence the plasticity of these alloys.