862 resultados para Program Action Model
Resumo:
At ODP Site 983, relative geomagnetic paleointensity and planktic and benthic delta18O records have been acquired for the last 350 kyr. The mean sedimentation rate in this interval is 11.3 cm/kyr. Magnetic properties and hysteresis ratios indicate that pseudo-single domain magnetite is the remanence carrier. Volume susceptibility (kappa), anhysteretic (ARM) and isothermal (IRM) remanence values vary by a factor of 3-4, well within the criteria usually cited for paleointensity studies. Natural remanent magnetization (NRM) is normalized by ARM and IRM to acquire the paleointensity proxy. Arithmetic means of NRM/ARM and NRM/IRM, calculated for five demagnetization steps in the 25-45 mT range, constitute the relative paleointensity estimates. Some paleointensity lows (particularly those at ~40, ~120 and ~188 ka) are associated with directional excursions of the field, especially the event at ~188 ka (referred to here as the Iceland Basin Event) that constitutes a short-lived polarity reversal. For the last 200 kyr, the records can be correlated with other high-resolution paleointensity records such as those from the Labrador Sea, Mediterranean/Somali Basin and Sulu Sea, implying that the millennial scale features are globally synchronous. A labeling system for paleointensity features is proposed that ties prominent highs and lows to oxygen isotope stages.
Resumo:
Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to ~54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 {plus minus} 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 {plus minus} 0.05 Ma for the early Eocene ash -17, and 65.250 {plus minus} 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radiometric geochronology is much more challenging than previously thought.