873 resultados para Product cost model
Resumo:
Solid oxide fuel cells (SOFCs) provide a potentially clean way of using energy sources. One important aspect of a functioning fuel cell is the anode and its characteristics (e.g. conductivity). Using infiltration of conductor particles has been shown to be a method for production at lower cost with comparable functionality. While these methods have been demonstrated experimentally, there is a vast range of variables to consider. Because of the long time for manufacture, a model is desired to aid in the development of the desired anode formulation. This thesis aims to (1) use an idealized system to determine the appropriate size and aspect ratio to determine the percolation threshold and effective conductivity as well as to (2) simulate the infiltrated fabrication method to determine the effective conductivity and percolation threshold as a function of ceramic and pore former particle size, particle fraction and the cell¿s final porosity. The idealized system found that the aspect ratio of the cell does not affect the cells functionality and that an aspect ratio of 1 is the most efficient computationally to use. Additionally, at cell sizes greater than 50x50, the conductivity asymptotes to a constant value. Through the infiltrated model simulations, it was found that by increasing the size of the ceramic (YSZ) and pore former particles, the percolation threshold can be decreased and the effective conductivity at low loadings can be increased. Furthermore, by decreasing the porosity of the cell, the percolation threshold and effective conductivity at low loadings can also be increased
Resumo:
In business literature, the conflicts among workers, shareholders and the management have been studied mostly in the frame of stakeholder theory. The stakeholder theory recognizes this issue as an agency problem, and tries to solve the problem by establishing a contractual relationship between the agent and principals. However, as Marcoux pointed out, the appropriateness of the contract as a medium to reduce the agency problem should be questioned. As an alternative, the cooperative model minimizes the agency costs by integrating the concept of workers, owners and management. Mondragon Corporation is a successful example of the cooperative model which grew into the sixth largest corporation in Spain. However, the cooperative model has long been ignored in discussions of corporate governance, mainly because the success of the cooperative model is extremely difficult to duplicate in reality. This thesis hopes to revitalize the scholarly examination of cooperatives by developing a new model that overcomes the fundamental problem in the cooperative model: the limited access to capital markets. By dividing the ownership interest into financial and control interest, the dual ownership structure allows cooperatives to issue stock in the capital market by making a financial product out of financial interest.
Resumo:
OBJECTIVES: Donation after circulatory declaration of death (DCDD) could significantly improve the number of cardiac grafts for transplantation. Graft evaluation is particularly important in the setting of DCDD given that conditions of cardio-circulatory arrest and warm ischaemia differ, leading to variable tissue injury. The aim of this study was to identify, at the time of heart procurement, means to predict contractile recovery following cardioplegic storage and reperfusion using an isolated rat heart model. Identification of reliable approaches to evaluate cardiac grafts is key in the development of protocols for heart transplantation with DCDD. METHODS: Hearts isolated from anaesthetized male Wistar rats (n = 34) were exposed to various perfusion protocols. To simulate DCDD conditions, rats were exsanguinated and maintained at 37°C for 15-25 min (warm ischaemia). Isolated hearts were perfused with modified Krebs-Henseleit buffer for 10 min (unloaded), arrested with cardioplegia, stored for 3 h at 4°C and then reperfused for 120 min (unloaded for 60 min, then loaded for 60 min). Left ventricular (LV) function was assessed using an intraventricular micro-tip pressure catheter. Statistical significance was determined using the non-parametric Spearman rho correlation analysis. RESULTS: After 120 min of reperfusion, recovery of LV work measured as developed pressure (DP)-heart rate (HR) product ranged from 0 to 15 ± 6.1 mmHg beats min(-1) 10(-3) following warm ischaemia of 15-25 min. Several haemodynamic parameters measured during early, unloaded perfusion at the time of heart procurement, including HR and the peak systolic pressure-HR product, correlated significantly with contractile recovery after cardioplegic storage and 120 min of reperfusion (P < 0.001). Coronary flow, oxygen consumption and lactate dehydrogenase release also correlated significantly with contractile recovery following cardioplegic storage and 120 min of reperfusion (P < 0.05). CONCLUSIONS: Haemodynamic and biochemical parameters measured at the time of organ procurement could serve as predictive indicators of contractile recovery. We believe that evaluation of graft suitability is feasible prior to transplantation with DCDD, and may, consequently, increase donor heart availability.
Resumo:
Khutoretsky dealt with the problem of maximising a linear utility function (MUF) over the set of short-term equilibria in a housing market by reducing it to a linear programming problem, and suggested a combinatorial algorithm for this problem. Two approaches to the market adjustment were considered: the funding of housing construction and the granting of housing allowances. In both cases, locally optimal regulatory measures can be developed using the corresponding dual prices. The optimal effects (with the regulation expenditures restricted by an amount K) can be found using specialised models based on MUF: a model M1 for choice of the optimum structure of investment in housing construction, and a model M2 for optimum distribution of housing allowances. The linear integer optimisation problems corresponding to these models are initially difficult but can be solved after slight modifications of the parameters. In particular, the necessary modification of K does not exceed the maximum construction cost of one dwelling (for M1) or the maximum size of one housing allowance (for M2). The result is particularly useful since slight modification of K is not essential in practice.
Resumo:
A simulation model adopting a health system perspective showed population-based screening with DXA, followed by alendronate treatment of persons with osteoporosis, or with anamnestic fracture and osteopenia, to be cost-effective in Swiss postmenopausal women from age 70, but not in men. INTRODUCTION: We assessed the cost-effectiveness of a population-based screen-and-treat strategy for osteoporosis (DXA followed by alendronate treatment if osteoporotic, or osteopenic in the presence of fracture), compared to no intervention, from the perspective of the Swiss health care system. METHODS: A published Markov model assessed by first-order Monte Carlo simulation was refined to reflect the diagnostic process and treatment effects. Women and men entered the model at age 50. Main screening ages were 65, 75, and 85 years. Age at bone densitometry was flexible for persons fracturing before the main screening age. Realistic assumptions were made with respect to persistence with intended 5 years of alendronate treatment. The main outcome was cost per quality-adjusted life year (QALY) gained. RESULTS: In women, costs per QALY were Swiss francs (CHF) 71,000, CHF 35,000, and CHF 28,000 for the main screening ages of 65, 75, and 85 years. The threshold of CHF 50,000 per QALY was reached between main screening ages 65 and 75 years. Population-based screening was not cost-effective in men. CONCLUSION: Population-based DXA screening, followed by alendronate treatment in the presence of osteoporosis, or of fracture and osteopenia, is a cost-effective option in Swiss postmenopausal women after age 70.
Resumo:
OBJECTIVE: To investigate the cost effectiveness of screening for Chlamydia trachomatis compared with a policy of no organised screening in the United Kingdom. DESIGN: Economic evaluation using a transmission dynamic mathematical model. SETTING: Central and southwest England. PARTICIPANTS: Hypothetical population of 50,000 men and women, in which all those aged 16-24 years were invited to be screened each year. MAIN OUTCOME MEASURES: Cost effectiveness based on major outcomes averted, defined as pelvic inflammatory disease, ectopic pregnancy, infertility, or neonatal complications. RESULTS: The incremental cost per major outcome averted for a programme of screening women only (assuming eight years of screening) was 22,300 pounds (33,000 euros; $45,000) compared with no organised screening. For a programme screening both men and women, the incremental cost effectiveness ratio was approximately 28,900 pounds. Pelvic inflammatory disease leading to hospital admission was the most frequently averted major outcome. The model was highly sensitive to the incidence of major outcomes and to uptake of screening. When both were increased the cost effectiveness ratio fell to 6200 pound per major outcome averted for screening women only. CONCLUSIONS: Proactive register based screening for chlamydia is not cost effective if the uptake of screening and incidence of complications are based on contemporary empirical studies, which show lower rates than commonly assumed. These data are relevant to discussions about the cost effectiveness of the opportunistic model of chlamydia screening being introduced in England.
Resumo:
OBJECTIVE: This study aimed to assess the potential cost-effectiveness of testing patients with nephropathies for the I/D polymorphism before starting angiotensin-converting enzyme (ACE) inhibitor therapy, using a 3-year time horizon and a healthcare perspective. METHODS: We used a combination of a decision analysis and Markov modeling technique to evaluate the potential economic value of this pharmacogenetic test by preventing unfavorable treatment in patients with nephropathies. The estimation of the predictive value of the I/D polymorphism is based on a systematic review showing that DD carriers tend to respond well to ACE inhibitors, while II carriers seem not to benefit adequately from this treatment. Data on the ACE inhibitor effectiveness in nephropathy were derived from the REIN (Ramipril Efficacy in Nephropathy) trial. We calculated the number of patients with end-stage renal disease (ESRD) prevented and the differences in the incremental costs and incremental effect expressed as life-years free of ESRD. A probabilistic sensitivity analysis was conducted to determine the robustness of the results. RESULTS: Compared with unselective treatment, testing patients for their ACE genotype could save 12 patients per 1000 from developing ESRD during the 3 years covered by the model. As the mean net cost savings was euro 356,000 per 1000 patient-years, and 9 life-years free of ESRD were gained, selective treatment seems to be dominant. CONCLUSION: The study suggests that genetic testing of the I/D polymorphism in patients with nephropathy before initiating ACE therapy will most likely be cost-effective, even if the risk for II carriers to develop ESRD when treated with ACE inhibitors is only 1.4% higher than for DD carriers. Further studies, however, are required to corroborate the difference in treatment response between ACE genotypes, before genetic testing can be justified in clinical practice.
Resumo:
Aggregates were historically a low cost commodity but with communities and governmental agencies reducing the amount of mining the cost is increasing dramatically. An awareness needs to be brought to communities that aggregate production is necessary for ensuring the existing infrastructure in today’s world. This can be accomplished using proven technologies in other areas and applying them to show how viable reclamation is feasible. A proposed mine reclamation, Douglas Township quarry (DTQ), in Dakota Township, MN was evaluated using Visual Hydrologic Evaluation of Landfill Performance (HELP) model. The HELP is commonly employed for estimating the water budget of a landfill, however, it was applied to determine the water budget of the DTQ following mining. Using an environmental impact statement as the case study, modeling predictions indicated the DTQ will adequately drain the water being put into the system. The height of the groundwater table will rise slightly due to the mining excavations but no ponding will occur. The application of HELP model determined the water budget of the DTQ and can be used as a viable option for mining companies to demonstrate how land can be reclaimed following mining operations.
Resumo:
Metals price risk management is a key issue related to financial risk in metal markets because of uncertainty of commodity price fluctuation, exchange rate, interest rate changes and huge price risk either to metals’ producers or consumers. Thus, it has been taken into account by all participants in metal markets including metals’ producers, consumers, merchants, banks, investment funds, speculators, traders and so on. Managing price risk provides stable income for both metals’ producers and consumers, so it increases the chance that a firm will invest in attractive projects. The purpose of this research is to evaluate risk management strategies in the copper market. The main tools and strategies of price risk management are hedging and other derivatives such as futures contracts, swaps and options contracts. Hedging is a transaction designed to reduce or eliminate price risk. Derivatives are financial instruments, whose returns are derived from other financial instruments and they are commonly used for managing financial risks. Although derivatives have been around in some form for centuries, their growth has accelerated rapidly during the last 20 years. Nowadays, they are widely used by financial institutions, corporations, professional investors, and individuals. This project is focused on the over-the-counter (OTC) market and its products such as exotic options, particularly Asian options. The first part of the project is a description of basic derivatives and risk management strategies. In addition, this part discusses basic concepts of spot and futures (forward) markets, benefits and costs of risk management and risks and rewards of positions in the derivative markets. The second part considers valuations of commodity derivatives. In this part, the options pricing model DerivaGem is applied to Asian call and put options on London Metal Exchange (LME) copper because it is important to understand how Asian options are valued and to compare theoretical values of the options with their market observed values. Predicting future trends of copper prices is important and would be essential to manage market price risk successfully. Therefore, the third part is a discussion about econometric commodity models. Based on this literature review, the fourth part of the project reports the construction and testing of an econometric model designed to forecast the monthly average price of copper on the LME. More specifically, this part aims at showing how LME copper prices can be explained by means of a simultaneous equation structural model (two-stage least squares regression) connecting supply and demand variables. A simultaneous econometric model for the copper industry is built: {█(Q_t^D=e^((-5.0485))∙P_((t-1))^((-0.1868) )∙〖GDP〗_t^((1.7151) )∙e^((0.0158)∙〖IP〗_t ) @Q_t^S=e^((-3.0785))∙P_((t-1))^((0.5960))∙T_t^((0.1408))∙P_(OIL(t))^((-0.1559))∙〖USDI〗_t^((1.2432))∙〖LIBOR〗_((t-6))^((-0.0561))@Q_t^D=Q_t^S )┤ P_((t-1))^CU=e^((-2.5165))∙〖GDP〗_t^((2.1910))∙e^((0.0202)∙〖IP〗_t )∙T_t^((-0.1799))∙P_(OIL(t))^((0.1991))∙〖USDI〗_t^((-1.5881))∙〖LIBOR〗_((t-6))^((0.0717) Where, Q_t^D and Q_t^Sare world demand for and supply of copper at time t respectively. P(t-1) is the lagged price of copper, which is the focus of the analysis in this part. GDPt is world gross domestic product at time t, which represents aggregate economic activity. In addition, industrial production should be considered here, so the global industrial production growth that is noted as IPt is included in the model. Tt is the time variable, which is a useful proxy for technological change. A proxy variable for the cost of energy in producing copper is the price of oil at time t, which is noted as POIL(t ) . USDIt is the U.S. dollar index variable at time t, which is an important variable for explaining the copper supply and copper prices. At last, LIBOR(t-6) is the 6-month lagged 1-year London Inter bank offering rate of interest. Although, the model can be applicable for different base metals' industries, the omitted exogenous variables such as the price of substitute or a combined variable related to the price of substitutes have not been considered in this study. Based on this econometric model and using a Monte-Carlo simulation analysis, the probabilities that the monthly average copper prices in 2006 and 2007 will be greater than specific strike price of an option are defined. The final part evaluates risk management strategies including options strategies, metal swaps and simple options in relation to the simulation results. The basic options strategies such as bull spreads, bear spreads and butterfly spreads, which are created by using both call and put options in 2006 and 2007 are evaluated. Consequently, each risk management strategy in 2006 and 2007 is analyzed based on the day of data and the price prediction model. As a result, applications stemming from this project include valuing Asian options, developing a copper price prediction model, forecasting and planning, and decision making for price risk management in the copper market.
Resumo:
The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.
Resumo:
The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.
Resumo:
The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
As continued global funding and coordination are allocated toward the improvement of access to safe sources of drinking water, alternative solutions may be necessary to expand implementation to remote communities. This report evaluates two technologies used in a small water distribution system in a mountainous region of Panama; solar powered pumping and flow-reducing discs. The two parts of the system function independently, but were both chosen for their ability to mitigate unique issues in the community. The design program NeatWork and flow-reducing discs were evaluated because they are tools taught to Peace Corps Volunteers in Panama. Even when ample water is available, mountainous terrains affect the pressure available throughout a water distribution system. Since the static head in the system only varies with the height of water in the tank, frictional losses from pipes and fittings must be exploited to balance out the inequalities caused by the uneven terrain. Reducing the maximum allowable flow to connections through the installation of flow-reducing discs can help to retain enough residual pressure in the main distribution lines to provide reliable service to all connections. NeatWork was calibrated to measured flow rates by changing the orifice coefficient (θ), resulting in a value of 0.68, which is 10-15% higher than typical values for manufactured flow-reducing discs. NeatWork was used to model various system configurations to determine if a single-sized flow-reducing disc could provide equitable flow rates throughout an entire system. There is a strong correlation between the optimum single-sized flow- reducing disc and the average elevation change throughout a water distribution system; the larger the elevation change across the system, the smaller the recommended uniform orifice size. Renewable energy can jump the infrastructure gap and provide basic services at a fraction of the cost and time required to install transmission lines. Methods for the assessment of solar powered pumping systems as a means for rural water supply are presented and assessed. It was determined that manufacturer provided product specifications can be used to appropriately design a solar pumping system, but care must be taken to ensure that sufficient water can be provided to the system despite variations in solar intensity.